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1 INTRODUCTION

Abstract

Self-supervised learning has gained much attention recently because it does
not require extra manual annotations. In this paper, we attempt to have a
thorough study on literature reviews of three types of the most popular self-
supervised learning over these years. The paper would in turn introduce hand-
crafted pretext training, generative methods, and contrastive learning methods.
In particular, we will focus on modern contrastive learning methods that com-
bine metric learning, clustering and mutual information maximization into a
unified framework. In these methods, useful embeddings can be learned by
drawing closer two different augmented embeddings of the same sample, while
repelling embeddings of different samples. Then we will discuss some successful
inductive biases introduced by recent methods and a probabilistic interpretation
of InfoNCE loss. Next, we will discuss our experiments results of contrastive
learning methods trained on CIFAR10 and an additional pathological classifica-
tion experiment. Finally, we will discuss some promising future directions.

1 Introduction

The recent success of supervised discriminative models relies heavily on manually
labelled data. With the help of the internet, a large amount of available data such
as CIFAR10 and ImageNet boost these methodologies. However, data annotated by
specialists can be hard to acquire for certain applications and mislabelled data can
be poisonous to machine learning models. These problems push researchers to think
out alternative approaches to leverage a large amount of unlabelled data.

Representation learning, originally applied in natural language processing, aims to
extract useful features from the input domain to improve the performance of un-
known downstream tasks. From information bottleneck theory, a good representa-
tion should capture large enough information for downstream tasks inputs(Hjelm
et al., 2019; Linsker, 1988). This principal, known as InfoMax, builds the back-
bone for most of the representation learning methods. Meanwhile, since the input
data often reside in a high dimensional space, to achieve aforementioned goal, rep-
resentation learning methods often use dimensionality reduction techniques such
as kernel function or deep learning to compress the inputs into lower-dimensional
latent spaces. Due to structural contraints in these mappings, information loss is in-
evitable. However, representation learning remains a difficult challenge because the
mutual information is intractable in the high dimensional space and the downstream
tasks are uncertain. In this report, we opt to discuss a recently surging genre called
self-supervised learning.

Self-supervised representation learning can be categorised as a subset of unsuper-
vised learning where self-defined signals are adopted as supervision and transformation-
invariant representation is learnedDoersch et al. (2016). In the self-supervised
framework, researchers hypothesize that deep learning models learn some general
knowledge (representation) by solving self-supervised tasks, also known as pretext
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2 HANDCRAFTED PRETEXT TRAINING

tasks. Performing self-supervised learning requires good pretexts and task-specific
losses. These necessary ingredients distinguish different methods from each other.

2 Handcrafted pretext training

Figure 1: Handcraft pretext:(a) Predicting relative position between patches (b) Col-
oration (c) Predicting rotations (d) Jigsaw puzzle

In the early stage of exploration, some handcrafted pretext tasks are proposed for
representation learning. Effective methods include predicting relative positions be-
tween patches(Doersch et al., 2016), predicting rotation(Gidaris et al., 2018), colour-
ization, jigsaw puzzle(Noroozi and Favaro, 2017), superresolution, and shuffle &
learn. A common idea for these methods is that these pretext tasks should derive
pseudo-labels automatically and use them as supervised signals for training. For ex-
ample, the jigsaw puzzle records the positions of patches after shuffling and forces
the network to perform a classification task by predicting the permutation of patches.
In general, these pretext tasks should be made difficult enough to encourage the
model to learn meaningful representations that generalize to downstream tasks. A
universal encoder, e.g., ResNet50, can be used to train on one of these tasks or a
sequence of them hoping to capture some transformation invariant features. Yet,
these heuristics are quite fragile and require domain-specific knowledge to really
contribute to downstream tasks. These handcrafted pretraining methods are soon
outperformed by their contrastive learning rivals.
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3 AUTOENCODER BASED METHODS

3 Autoencoder based methods

Another line of research resides in generative approaches and their common pretext
task is modelling the input distributions with reconstruction. They maximize the mu-
tual information either with autoencoding or adversarial training. Although mutual
information is often intractable in high dimensional settings, variational inference
approaches this by separating the tractable KL divergence terms out and maximiz-
ing the evidence lower bound. The vanilla variational inference learns inefficiently
because each data point has a set of variational parameters. Amortised variational
inference (Kingma and Welling, 2019), also well known as VAE, solves this with a
weight sharing network for all data points. A bottleneck of these methods is the
amortisation gap often results in underfitting and blurry reconstructions.

Figure 2: Disentangled VAE model

Another benefit of reconstruction pre-training with VAE is disentanglement of repre-
sentations, shown in Figure 2. This is because we pose a fully factorised prior on the
latent codes. This allows the approximated posteriors (the representation distribu-
tion) to be a factorised Gaussian as well. Therefore the representation distribution is
designed to be smooth, disentangled and spatially coherent. Interpolations on these
smooth disentangled latent spaces gives us controllable generative samples. Further
regularization on these latent codes allows the embedding space to learn high-level
semantics from co-occurent multimodalities. It also worth mentioning that these
methods often need a trade off between generality and controllability.

Although the interpretability of VAE is fascinating, the fidelity of generative samples
is often capped by posterior collapse. One the other hand, the generator and dis-
criminator of GAN learn the data distribution through playing a minmax game. The
fidelity of samples generated by large scale GAN (Brock et al., 2019) is of the top
level these days against other generative methods. Both these two methods try to
learn representations through modelling the generative process of data. However,
it is often hard to model the distribution of data from a high dimensional space,
e.g., large images. And measuring the quality of representations by Inception Score
or interpretability might not be the only way to go. A general way to learn useful
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4 CONTRASTIVE LEARNING

representation needs to be found.

4 Contrastive learning

The most straight forward intuition of contrastive learning is to encourage the rep-
resentations that are semantically similar to be closer while pushing away the rep-
resentations of diverse samples. The key is learning by comparing. In the next few
subsections, we will first introduce the different architectures and their connection
with metric learning. Particularly, we will discuss the Siamese network, similar-
ity functions, and modern contrastive learning methods. Then we will analyse loss
functions and the probabilistic interpretation of InfoNCE loss. Finally, we will discuss
hard negative sampling and other future directions.

4.1 Architecture

Contrastive learning has a strong connection with deep metric learning in terms of
model architectures and similarity measurement. Metric learning aims to learn an
optimal kernel (score) function with the binary labels of inputs pairs. A positive
pair contains two different images with the same object, and the method belongs
to supervised learning. For modern unsupervised contrastive learning, as shown in
Figure 3, a positive pair contains two augmented versions (views) of the same image
and the goal is to extract good representations through comparing. Hence, we need
architectures dedicating for comparison and a score function.

A popular architecture designed for verification is the Siamese network (Chopra
et al., 2005). It is composed of two twin encoders and their outputs are jointly
trained on top with a similarity function to learn the relationship between a pair of
inputs. The training process is as follows. First, the twin encoders take in two input
images simultaneously and produce two representations. Then a score reflecting the
similarity of these representations is computed with a distance function (either pre-
defined or learned). Next, a contrastive loss compares the distance with a margin.
And if the distance of a positive pair is outside the margin, the twin encoders will
be updated to pull the representations of these two images towards each other. The
repelling process for the negative pair works similarly when the distance is smaller
than a margin. Here, the training labels only indicate whether two images are a pos-
itive pair or a negative pair. That is, we only need weak supervised signal that tells
us if two inputs are semantically the same or not. Original Siamese network share
weights between the two encoders, but recent modifications show this is mainly a
design choice(Chen and He, 2020).

Through comparing, the Siamese network learns a score function, and the twin en-
coders learn embedding spaces that can be used for downstream tasks. Since neural
network is very flexible, this architecture can theoretically model any kernel func-
tion(Widjaja, 2003). We can perform classification with the k nearest neighbours
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4 CONTRASTIVE LEARNING 4.1 Architecture

algorithm with additional class labels from a support set. Siamese network is there-
fore widely applied in verification tasks and few shots learning. For instance, CNN
encoders can be used for signature verification, face verification, and pedestrian
reidentification. LSTM encoders can be trained in this way to improve speech verifi-
cation (Chopra et al., 2005) and automatic speech recognition (van den Oord et al.,
2018).

Figure 3: Triplet contrastive learning framework

A common issue of these early Siamese network-based methods is that reducing the
distance of a positive pair will not automatically increase the distance of negative
pairs, leaving the training inefficient. As shown in Figure 3, one solution is to train
a triplet network () with a set of triplets. Each triplet includes an anchor, a positive
sample and a negative sample. Here, the distance between the anchor and the
positive sample and the distance between the anchor and the negative sample form
a normalizer (denominator in the distance function). Given a triplet, the distance of
the negative pair now increases simultaneously as the distance of the positive pair
increases. This boost optimization during training.

4.1.1 Similarity functions

Another essential component for both contrastive learning and metric learning is the
metric function which criticizes the similarity or dissimilarity of two representations.
Here, metric functions are also referred to as distance, score function or critic func-
tions in different works. To measure the distance between two embeddings, early
contrastive learning methods adopt energy-based metrics such as Euclidean or Man-
hattan distance. Recently, the inner-product similarity family gains their popularity
after the introduction of attention mechanism, e.g., bilinear model qTWk, separable
model φ(q)Tφ(k) and cosine similarity (here are typically MLPs). Particularly, cosine
similarity, also known as cosine embedding loss, reduces the magnitude discrepancy
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4.1 Architecture 4 CONTRASTIVE LEARNING

and encourages the model to focus on angular distance. That is, embeddings are
normalized onto a super sphere and rotated to be as aligned as possible for positive
pairs, and repelled to be orthogonal for negative pairs. This similarity can be com-
puted swiftly after layer normalization.

Figure 4: A illustration of energy surface where blue dots represent positive sample and
black arrows represent negative samples

The intermediate network outputs give us representations. Energy manifold is one
of the most popular theories that models these representations. According to energy
manifold theories, the positive and negative samples will help our model learn a low
dimensional manifold where positive samples are in the manifold with low energy,
whereas negatives samples are outside the manifold with high energy (LeCun et al.,
2006). To enforce the smoothness of the manifold, we need a large number of neg-
ative samples to push up the energy surface around the data manifold as shown in
Figure4.
However, a bottleneck in implementing this idea is how to compute the representa-
tions of a large number of negative samples efficiently. Furthermore, another prob-
lem appears when applying the Siamese network to unsupervised representation
learning. Although we expect the twin networks to extract abundant transformation-
invariant representations from two augmented views, they often have the mode col-
lapse issue where trivial constant representations are returned. Recent contrastive
learning methods proposed some intriguing solutions to these problems. As shown
in Figure, we categorize recent approaches into online methods and memory bank-
based methods. Each category will be explained below.

4.1.2 Memory bank-based method

Rather than discarding the representations after computation, (Wu et al., 2018)
adopts a memory bank to store them. This is similar to the experience replay buffer
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4 CONTRASTIVE LEARNING 4.1 Architecture

widely used in reinforcement learning where the agent learns efficiently from expe-
rience sampled from a buffer. During training, computed representations are uni-
formly sampled as negative samples before computing the contrastive loss with the
representation of the current image. However, this brings up an issue of feature in-
consistency. That is, representations only get updated when last sampled and some
outdated representations computed long ago harm the training. PIRL alleviates this
issue with a moving average over representations. Another contribution of PIRL is to
prove jigsaw puzzle pretraining (strong data augmentation) is effective for extract-
ing invariant features.

Figure 5: A memory bank based contrastive learning framework (MoCo)

MoCo replaces the memory bank with a queue where newly computed representa-
tions are enqueued and oldest representations are automatically dequeued. Since it
is hard to maintain keys and values in a queue, sampling is removed and the inner
product between the whole queue and the current representation is computed on
the fly. Another popular design is the momentum encoder whose parameters gets
updated by the parameters of the query encoder in a moving-averaged way. It is
recently reported that MoCo needs a large queue size to get good performance.

4.1.3 Online methods

With comprehensive empirical studies, SimCLR introduces a simple online contrastive
learning framework and for the first time achieves comparable performance with its
supervised counterparts. One major finding is that combinations of augmentations
are critical for extracting invariant features from different augmentations of the same
images. Although contrastive learning with single augmentation encompasses many
pretexts implicitly, a combination of transformations reduces redundant information
of two views and rules out trivial solutions, e.g., image entropy which result in con-
stant representations. Another contribution is to add a multiple-layer perceptron as
a nonlinear projection head between the contrastive loss and the representations.
This nonlinear projection head also helps the model to identify the transformation-
invariant representations.
On top of that, abundant empirical studies show that properly scaling up cosine
similarity with temperature improves performance on downstream tasks. Besides, a
symmetric contrastive loss, NT-Xent, is introduced to avoid mode collapse. As shown
in Figure 7, for a positive pair, when the positions of the query and the key are
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Figure 6: A illustration of SimCLR framework

swapped, the network should predict a comparable similarity score with the origi-
nal setup. Combining these two similarity scores provides a better spatial layout for
the positive and negative pairs on the hyperplane. This technique is widely adopted
in later works. Finally, SimCLR discards the memory bank and compares an image
with the rest of the images in its batch. This is essential for models that learn from
a server when the amount of data is huge and most images are only learned once.
Another popular work, Contrastive Predictive Coding (CPC) also falls into this cate-
gory. Although their pretraining is to predict if next frame audio is a positive sample,
such contrastive learning framework can be generalized to images and videos and
sentences.

Figure 7: Swapping to compute a contrastive loss

A problem for online contrastive learning is that negative samples in the same batch
only represent a subset of negative samples. This may probably be the reason for
the collapsing representations frequently reported in the online methods. A direct
solution is to increase batch size. The batch size in the official configuration of Sim-
CLR is 4096, which is impossible to train on a single GPU. Therefore, the model is
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4 CONTRASTIVE LEARNING 4.1 Architecture

trained with multiple GPUs in parallel or TPUs. The commonly used SGD optimizer
is replaced with LARS to tackle large mini-batch optimization where the learning
rate scaling is proportional to the square root of the batch size. It is reported that
the Batch Normalization module will leak information to replicated models deployed
on other GPUs, so MoCov2 introduces a Shuffle Batch Normalization module which
computes mini-batch information separately on a single GPU.

4.1.4 Clustering-based methods

All these aforementioned contrastive learning methods can be categorised as in-
stance discrimination methods and their commonly shared drawback is the repre-
sentations are not encouraged to capture global structural information. This issue
arises because samples are forced to be negative pairs as long as they are from differ-
ent instances. This assumption ignores semantic connections between different in-
stances. Specifically, two images from the same batch may contain objects from the
same class or even the same object in extreme cases. Pushing these instances apart in
the latent space is detrimental for learning higher semantic information from data.
To address this problem, clustering is combined with instance discrimination which
allows samples to be compared on a cluster level. Similar to instance-wise methods,
these clustering-based methods also have memory bank based versions and online
version.

Prototypical contrastive learning (PCL) assumes each data point is assigned to a clus-
ter centroid (prototype) in the latent space. The prototypical network is updated
with Expectation-Maximization (EM) algorithm. In the E step, k cluster centroids
are estimated by the GPU-based K-means algorithm(Johnson et al., 2017). In the M
step, the code of each sample is compared with the codes of all the cluster centroids;
the contrastive cross-entropy (NCE) is computed with assignments and similarity
scores; the parameters of the score function are updated through backpropagation.
To prevent representations from assigning to a single cluster, the temperature is re-
placed with cluster concentration which explicitly downscales the similarity scores
of samples within a loose cluster and pulls the representations towards the cluster
centroids. However, updating the cluster representations with k-means requires re-
computing all representations of the entire training set after every epoch. Besides,
the algorithm is trained offline because it takes a few epochs for the k-means algo-
rithm to converge from randomness(Johnson et al., 2017).

To make clustering-based contrastive learning online, swapping assignment between
multiple views (SwAV) introduces a quantisation head that directly predicts cluster
embeddings from the embeddings of the current batch. First, SwAV considers a soft
clustering assignment problem that shares the same closed-form solution as a con-
strained optimal transport problem. Under a batch learning setting, each data point
has a soft label that is updated with a formula supported by current embeddings
using the Sinkhorn-Knopp algorithm(Cuturi, 2013). To address the mode collapse
issue, SwAV aggregates strong data augmentation and swapped prediction. Specif-
ically, the representation of one augmented view is compared with the soft label
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4.1 Architecture 4 CONTRASTIVE LEARNING

Figure 8: Clustering-based methods introduce cluster-level comparision to contrastive
loss and capture fine-grained semantics(Kotar et al., 2021)

of another augmented view. Another online method called InterCLR also uses a
swapped prediction but more focus on aggregating positive groups and negative
groups, i.e., samples with the same pseudo-labels are considered as positive pairs
and vice versa. Like SimCLR, SwAV needs a large batch size to predict cluster em-
beddings and compares in a batch-wise fashion. When the batch size is smaller than
the designed size of prototypes, the prototypical embeddings are kept in a buffer
until enough, which makes the model trained like RNNs.

Clustering-based methods improve the performance of representations on classifica-
tion because they impose proper inductive bias with quantisation heads and pseudo-
labels. A common point shared by these methods and semi-supervised leaning is that
data points have global aggregated structures and decision boundaries should not
pass through high-density manifolds. Unlike semi-supervised pseudo labels meth-
ods, the number of prototypes can be larger than the number of real classes. There-
fore, prototypes can be learned to capture fine-grained semantic features. For exam-
ple, as shown in Figure 8, the separate prototypes in the cat class represent features
of their separate manifolds, namely black cats, sleepy cats and cats with a big nose
as vectors.

Interestingly, there is a natural clustering phenomenon for representations learned
by instance-level discrimination methods, manifested by their accuracy on down-
stream classification task performed by k nearest neighbours and latent code visu-
alisations. Assuming prototypes follow isotropic Gaussian distributions, clustering-
based methods take one step further: images within the same distribution but not
within the same prototype should have a larger distance than images from the same
prototype. This is often true for Inception image crops of ImageNet. As a result,
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4 CONTRASTIVE LEARNING 4.2 Loss functions

their learned representations show stronger clustering in the latent space.

4.2 Loss functions

Early works use energy-based contrastive loss for comparison. Modern contrastive
learning methods apply probabilistic contrastive loss which distincts themselves from
previous methods. We will analyse how NCE loss adopt mutual information maxi-
mization principal and why comparison is crucially important. Furthermore, we will
discuss how NCE based methods are linked with metric learning.

Recently, several self-supervised learning approaches have reached state-of-the art
performance in the representation learning with InfoMax principle. A good method
extracts invariant representation g(x) that maximizes the mutual information I(X;
g(x)) from different transformation of the same scene under some structural con-
straints. However, the mutual information is notoriously hard to optimize in high-
dimensional spaces, and in practice we use a surrogate function to lower bound it.

Aaron van den Oord (van den Oord et al., 2018) first proved that the equation
can be optimized by maximizing InfoNCE loss. To get deeper understanding of In-
foNCE, we elaborate how it evolve from Noise Contrastive Estimation (NCE) and its
different formats. For simplicity, we use the same notations as in MoCo, represent-
ing two different views of the same image P(x) as query (q) and positive key (k+)
and potential views from other images Pn(x) as negative key (k−). The NCE func-
tion that maximizes the log likelihood of p(k+|q)–p(k−|q) was originally proposed for
instance-level discrimination between real data and generated noise. With the idea
of learning by comparison, the loglikelihood of P (y = 1|q,k+) of the query (q) and its
positive key (k+) , is maximized while the loglikelihood of P (y = 0|q,k−) is minimized
through sampling. It has been shown that InfoNCE approximates this maximum log
likelihood estimation and the optimal solution is equivalent to maximizing mutual
information I(q,k+). Hence, by modelling the probability P (y = 1|q,k+) directly with
normalized similarity, recent InfoNCE based contrastive learning is a discriminative
method.

Figure 9: As the redundant information increases, transfer performance drops(Tian
et al., 2020)
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4.3 Evaluation 4 CONTRASTIVE LEARNING

Following the InfoMax principal, several modifications such as NT-Xent, ProtoNCE
made a progress on the LSVRC benchmark. However, although InfoMax provides
principled guidance for contrastive learning, recent studies ?? show that maximising
the mutual information of positive pairs alone does not guarantee good represen-
tation learning. In this work, a invertible neural network (RealNVP) is used for
contrastive learning. Ideally, invertible neural networks such as RealNVP and Glow
provide smooth and invertible mappings for distributions and therefore mutual in-
formation is tractable in their experiments. Their experiments show a tight mutual
information lower bound does not guarantee good downstream performance. An-
other recent work (Tian et al., 2020) finds a parabola shaped relationship between
mutual information I(v1,v2) and transfer performance. The interesting conjecture is
that good views should maximize relevant information for downstream tasks while
reducing as much irrelevant information as possible, shown in Figure 9. This work
pushes us to think what defines similarity. For instance, if we feed our model with
orange cats crops continuously without random color jittering or grayscaling, the ex-
tracted representations are very likely to have feline features code and orange color
code mixed up. For a downstream cat or dog classification, our model will probably
assume cats have to be orange and thus performing poorly.

Decoupling task-relevant information from irrelevant may sound frightening espe-
cially when downstream tasks are assumed unknown. Recently, however, Barlow
Twins also justified redundancy reduction via signal decorrelation (Zbontar et al.,
2021). Barlow Twins directly models the covariance of representations and penalize
the off-diagonal terms. Furthermore, this method does use negative pairs for com-
parison directly and there fore belongs to general self-supervised learning.

Recent success of contrastive learning cannot be attributed to mutual information
maximization alone, and we emphasizes the importance of data augmentation and
the inductive bias introduced by network architectures.

4.3 Evaluation

The benchmark for unsupervised contrastive learning is the ImageNet LSVRC 2012.
We will discuss three evaluation methods for unsupervised contrastive learning pre-
training on this benchmark. The most widely used one is the linear evaluation pro-
tocol ((Bachman et al., 2019))where the feature extraction encoder is frozen and a
linear layer is trained on top with the labelled training dataset. It worth mentioning
data augmentation and regularization are not allowed. Different methods can then
directly compare their accuracy on the test dataset.
Another evaluation method is the performance of the learned representations on
semi-supervised classification tasks. Semi-supervised classification assumes the de-
cision boundary will not cross through high-density data manifolds. Hence, it im-
plicitly examines whether the embedding space has captured some global structural
information of data. Different models are finetuned on a small fraction of labelled
data without data augmentation and regularization. Finally, they can compare their
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classification rate on the test dataset.
The last method is evaluating the representations’ performance on transfer learning
tasks. There are more than 20 diverse downstream tasks varying from image seg-
mentation (Cityscapes) to optical flow estimation (KITTI Optical Flow). For image
classification, VOC2007 and Caltech101 are commonly used for fair comparision??.

5 Future direction

5.1 Hard negative mining

Part with the recent probabilistic interpretation based on InfoMax, a recent study
shows finding “hard” negative samples with important signals matters for contrastive
learning.In contrastive learning, “hard” negative samples belong to negative sample
pairs that are frequently predicted as positive pairs or predicted as negative pairs
with a very high loss(Sun et al., 2019). With the intuition of the human learns from
their mistakes, we hope the model to improve by correcting these misclassified hard
negative pairs. Recent hard mining methods make good progress on classification
task with some help from semi-supervised learning. As shown in Figure 10, instead
of using Mixup techniques in the input space, ?? mixes up the embeddings of hard
negative samples in the lower dimensional embedding space. These synthetic data
points increase the density of hard negative samples in the embedding space and
help the model to learn invariant transformation in the representations.

Figure 10: Hard negative mining (Kalantidis et al., 2020)

From a probabilistic perspective, we suggest more investigation be put into combin-
ing ”hard” samples mining with InfoMin. As shown in Figure ?? and Figure ??, a
hard ”negative” sample can be a negative key image that has a lot of mutual infor-
mation with the query image but a different semantic meaning. A ”hard” positive
sample can be a positive key that has little mutual information with the query image
but the same semantic meaning.
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6 Experiments

6.1 Part1 Method justification on CIFAR10

We carried out a set of empirical studies on CIFAR10 to verify the effectiveness of
several recent contrastive learning methods. Our goal is to learn a representation en-
coder that embeds input images to a lower-dimensional latent space via contrastive
learning. Our downstream task is an image classification task. The linear evaluation
protocol will be used to show the effectiveness of different methods. As one of the
most well-known benchmarks for image classification, CIFAR-10 consists of 60,000
colour images from 10 classes. Since contrastive learning requires no labels, we use
the training dataset and the testing dataset provided by torchvision. To ensure re-
producibility, we fix our random seeds at the beginning.

In part1, we evaluate the performance of 4 contrastive methods, namely näıve mem-
ory bank, MoCo, SimCLR and SwAV. Here, näıve memory bank (NMB) refers to the
PIRL without jigsaw pretraining and multi-head projection. These four methods fol-
low a general Siamese network. The training process can be described as follows.
To ensure a fair comparison, we fix our data augmentations as resizedcrop (32x32)
followed by colour jitter. This is the best augmentation combination reported for
the ImageNet benchmark. We use two ResNet18 as twin encoders and the size of its
output embedding is (512,). For simplicity, we use a linear projection that converts
the dimension of embedding to 128. These projected embeddings are all normalized
before computing cosine similarity. After the similarity is scaled by the temperature,
cross-entropy is computed with the labels of the negative pairs set as 0. Finally, we
optimize the parameters with a momentum SGD optimizer. The K nearest neigh-
bours algorithm is used for finetuning the hyperparameters of our models because
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6 EXPERIMENTS 6.1 Part1 Method justification on CIFAR10

we are not allowed to train a classification head with label data in the middle of
training. The KNN monitor also allows us to do early stopping when necessary. The
support set of our KNN monitor is the training dataset.

First, we compare the performance of two memory bank-based methods, näıve

Figure 13: training loss of NMB Figure 14: training loss of MoCo

memory bank (NMB) and MoCo. The NMB’s memory bank has the same size as the
training dataset as 50000 and the index of each sample can be tracked easily. At
the start of training, there is a warmup epoch to fill the memory bank with all the
representations of the training dataset, which can be seen from the large magnitude
of the training loss curve. Since both methods are memory-based contrastive learn-
ing methods, they can be trained seamlessly on a single Tesla GPU. Fig13 and Fig14
compare the training loss of NMB and MoCo. MoCo have a much smoother training
curve than NMB. Fig17 and Fig18 compare the validation accuracy, monitored by
KNN, of NMB and MoCo. NMB’s validation curve is also spikier than MoCo’s. This
is because the embeddings in MoCo queue are all recently computed. By contrast
the embeddings in the naive memory bank are only updated when last seen, and
they can be computed hundreds of iterations ago. The momentum encoder also sta-
blizes training by following the target encoder with a moving average. From these
observation, we conclude a larger memory bank does not necessarily mean better
downstream performance as the model is more likely to encounter the embedding
inconsistency problem.

After pretraining, we follow linear evaluation protocol to test our model. First, we
freeze our encoder and train a linear classification head on top without any augmen-
tation. Then we test our model on the test dataset.

To evaluate both methods in semi-supervised learning, we reload the checkpoint
of our pre-trained encoder and finetune it on 1% of our training data with labels.
Still, data augmentation is not allowed. The results are shown in Table 1. MoCo
outperforms NMB totally. More importantly, MoCo outcompetes supervised learning
on the semi-supervised learning task by 30% which proves the effectiveness of both
methods. KNN-based contrastive classifiers also show promising results on the semi-
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Figure 15: validation accuracy of NMB Figure 16: validation accuracy of MoCo

supervised learning task which demonstrates their utility on few shots learning.

Table 1: Performance of different methods in image classification

label fraction 1% label fraction 100%

Methods KNN Semi-supervised KNN Top1 Top5

NMB 38.10 46.33 61.65 52.10 97.8
MoCo 69.57 73.36 85.20 81.54 99.19

SimCLR 57.02 59.20 67.92 62.50 88.73
SwAV 64.37 70.10 80.96 99.61

Supervised 40.00 85.02

Here, we verify the effectiveness of two online contrastive learning methods, Sim-
CLR and SwAV. Since SimCLR requires a large batch size to work, we train our model
on an 8-core TPU v2 that is publicly available in Colab. We distribute each core with
a batch of 256 samples and that makes 2048 in total! To avoid mode collapse,
we use normalized temperature-scaled cross-entropy loss (NT-Xent) which is a sym-
metric (swapped) contrastive loss. We adopt the LARS optimizer from the official
implementation(Chen et al., 2020). It is reported that when the number of training
epochs is large, a larger temperature (0.5) works better than the smaller tempera-
ture (0.1). We believe decreasing the temperature enforces local smoothness. As the
number of epochs increases, the variance of the representations increases and the
similarity functions can be overconfident which harms representation learning.
Both SimCLR and SwAV are trained end-to-end, so there is neither memory bank

nor momentum encoder in their architectures. Both pretrainings are cut off after 100
epochs. Under the linear evaluation protocol, the accuracy of SimCLR is 62.50%,
whereas the accuracy of SwAV is 80.96%.

It worth mentioning that SwAV runs much faster than SimCLR. It only takes about
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Figure 17: training loss of SimCLR Figure 18: training loss of SwAV

5 hours to run 100 epochs on a single Tesla GPU. This benefits from the direct esti-
mation of cluster embeddings and soft pseudo labels. These cluster embeddings are
simply the weights of a linear layer that takes image representations as inputs. Even
though SwAV is not fully trained, it achieves a high accuracy. The results of accuracy
on semi-supervised learning demonstrate the effectiveness both methods.

We visualize the learned representations of MoCo with t-SNE (perplexity=200),
shown in Figure19. The samples from the same class are grouped together naturally.
This demonstrates that there are underlying structures in the embedding space and
our representations successfully capture some high-level semantics via contrastive
unsupervised representation learning.

6.2 Part2 medical image classification

In the second part, we explore how contrastive learning methods perform on a
medical image classification task. In particular, we attempt to apply unsupervised
contrastive representation learning on a pathological dataset called PatchCamelyon
(PCam). Here, our downstream task is a binary classification task where the tis-
sues are predicted as benevolent or malignant. As shown in Figure??, we build a
unsupervised contrastive learning framework where transformation-invariant repre-
sentations are extracted from bottom to top. More precisely, the embeddings of two
augmented versions of the same input image are brought closer and the embeddings
of different images are pushed away.

6.2.1 Data Analysis

A quick introduction to our dataset (PCam): the PatchCamelyon benchmark is an
image classification dataset that contains 327,680 images (96 x 96) extracted from
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Figure 19: T-SNE visualization of MoCo learned representations for CIFAR10

Figure 20: The contrastive representation learning framework for PCam
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histopathologic scans of lymph node sections. Each image is annotated with a binary
label indicating the presence of a tumour.
First, we do a simple data analysis on our dataset. There are 262,144 images in
our training set and 32,768 images in our test set. 50.25% of our training data is
malignant and 50.27% of our testing data is malignant. This is a balanced bench-
mark. Then we compute the histograms of the first 100 tumour patches and first 100
non-tumour patches shown in Figure21 and Figure22. The entropy of the tumour
patches is 7.83, which is comparable with the entropy of non-tumour patches (7.67).
The histogram of the tumour patches is slightly different from the histogram of the
non-tumour patches, but this is probably because different acquisition devices have
different illumination and contrast. It is hard for non-specialists to tell the difference
from first-order information.

6.2.2 Implementation Details

Figure 21: Histogram of benevolent Figure 22: Histogram of malignant

We use random resized crop (96x96) and colour jittering as our first augmentation
setup and jigsaw puzzle as our second augmentation setup. We use ResNet18 as
encoders and use SGD as our optimizer with a weight decay of 0.1 with milestones
at 60 and 120 epochs. In terms of hyper-parameters, we set our batch size as 512,
and the size of memory bank as 4096, and the temperature for InfoNCE as 0.07.
We train these models with four V100 (16GB) in parallel for 300 epochs which
takes approximately 3 days. Our train loss curve is shown in Figure23. The linear
evaluation results are presented in Table 2.
Our demo code – Google Colab Jupyter Notebook

6.2.3 Analysis and discussion

In the Figure23, there are several spikes that might be caused by setting learning
rate decaying milestones too early. However, the loss is decreasing which demon-
strates the convergence of our method. As shown in Table 2, the top1 accuracy of
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Figure 23: The loss curve of the first model trained on PCam

Table 2: Linear evaluation results of MoCov2 trained on PatchCamelyon

Method Resized Crop Color Jittering Jigsaw Top1 Accuracy

MoCo X X × 61.70
MoCo × × X 65.22
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MoCo with random resized crop and colour jittering is 61.70%, and top1 accuracy
of MoCo with jigsaw puzzle augmentation is 65.22%. We argue jigsaw augmenta-
tion is more proper for this dataset. Since the linear evaluation protocol only allows
data normalization as augmentation, the linear classification head on top is not well
trained. If we use a nonlinear classification head and finetune the whole model
with more complex augmentated labelled data, we can have much better results.
The visualization of learned latent space is shown in Figure24. Although there is
some overlap between the two classes in the embedding space, positive samples are
mainly mapped to the right part whereas negative samples are mapped to the right
part. This demonstrates the effectiveness of the MoCo contrastive learning method.

Figure 24: T-SNE visualization of learned representations for PCam
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