
IMPERIAL COLLEGE LONDON

DEPARTMENT OF COMPUTING

DeepCurl: Exploring deep curriculum
learning for image classification

Author:
Bohua Peng

Supervisors:

Ben Glocker
Mobarakol Islam

Date: September 2, 2021

CONTENTS CONTENTS

Contents

1 Introduction 5

2 Background 7
2.1 Human perceptual uncertainty . 7

2.1.1 Quality control . 7
2.1.2 Data Analysis . 8

2.2 Pretrained deep difficulty metrics . 13
2.2.1 Output margin . 13
2.2.2 Forgetting events . 13
2.2.3 C-score . 14
2.2.4 Prediction depth . 16
2.2.5 Deep metric . 17
2.2.6 Other deep learning scores 18

2.3 Curriculum learning methods . 19
2.3.1 Predefined curricula . 19
2.3.2 Automatic curricula . 22

2.4 Confidence and model calibration . 23

3 Difficulty Metrics 25
3.1 Model calibration . 25
3.2 Prediction Depth . 27

3.2.1 On two dimensional difficulty 27
3.2.2 Discussion . 30

3.3 Angular output magin . 32
3.3.1 Inter-class variance and intra-class variance 32
3.3.2 Find a space with deep metric learning 33
3.3.3 Which angle for difficulty . 37

3.4 Comparing different metrics on CIFAR10-H 39

4 Handcrafted curricula 41
4.1 A class-balance aware scheduler . 44
4.2 Evaluation . 46
4.3 Handcrafted curricula for Transfer learning 53
4.4 Discussion . 57

5 Automatic curricula 58
5.1 Class-imbalanced learning behavior 59
5.2 SPL and SPCL on image classification 63

6 Future work 65

7 Conclusion 66

2

CONTENTS CONTENTS

Abstract

Curriculum learning allows machine learning models to learn from differ-
ent levels of subtasks in a meaningful order. Inspired by the fact that human
learners perform better when learning from easy to difficult, researchers have
mimicked this principle and designed different curriculum learning strategies.
However, the definition of difficulty itself is very vague for image classification.
It also remains arguable whether curriculum learning truly improves accuracy
during categorization.

This project aims to answer questions including (1) what is the correlation
between existing difficulty scores for image classification, (2) whether curricu-
lum learning is useful for image classification, (3) does recently popular auto-
matic curricula outperform handcrafted curricula.

3

CONTENTS CONTENTS

Acknowledgements

Thank you to Dr. Ben Glocker for your guidance in this project. Thank you for pro-
viding such a interesting topic. Thank your for you supervision and advice. I learn
and grow from this project.

Thank you to Dr. Wenjia Bai for allowing me to attend your weekly meetings on
MICCAI2020.

Thank you to Dr. Mobarak Islam for talking to me weekly. Thank you for your tech-
nical support.

Finally, thank you to my partner, Chunyan Jia, for everything.

4

1 INTRODUCTION

1 Introduction

Presenting data in a meaningful order might improve the performance of a machine
learning algorithm without changing the algorithm itself. This is incredibly tempt-
ing to both academia and industry. Training models from easy data to hard ones,
curriculum learning has gradually become a hotspot in recent years. However, so
far, there is no accurate definition for example difficulty. Also, due to a lack of
theoretical support, it remains unknown whether curriculum learning will improve
performance in image classification. The objective of this project mainly consists of
two parts shown in Figure 1. The first part is to investigate different difficulty scores.
The second part is to test the effectiveness of different curriculum learning strategies
for image classification.

Figure 1: Curriculum learning pipeline

Example difficulty comes from cognition formed in humans’ brain during human
categorization. In cognitive science, human categorization has two famous models.
The first one is prototype model which began with the psychological notion that
humans learn rules for categories(Bruner et al., 2017). This model can quantify
difficulty with the similarity between the current sample and the prototypes of can-
didate categories. Challenged by the work of Rosch, the first branch moves its focus
from observable representations to abstract representations. In the same decade,
exemplar models are proposed to create decision rules simply based on the compu-
tation with other samples. By contrast, this model measures example difficulty with
the summed similarity between response caused by current stimulus and all known
members of a category. Obviously, we cannot obtain human representations directly,
which motivates us to look for proxies to estimate these two types of difficulties. As
good function approximator, neural networks can learn high-dimensional abstract
representations that resemble features used in human categorization. Therefore, the
first goal of this project is a proof-of-concept demonstrating the potential of applying

5

1 INTRODUCTION

deep learning to difficulty measurement.

Study shows that learners will achieve better learning outcome when they learn from
simple subtasks to difficult subtasks. The reason behind this has not yet been fully
discovered. In recent years, deep learning methods have gained great popularity and
have built strong baselines across all kinds of machine learning problems. Training
deeper and more powerful models requires a large amount of data. Some of these
data come from experts, but some may come from crowd annotators. The content
of some data has corruption and perturbation. Some are even mislabeled. How to
use a meaningful order to achieve the best learning effect has become a hot issue of
widespread concern. Bengio et al. (2009) mimics the principle of human curricula
and initially introduce a curriculum learning strategy that train deep learning models
from easy to hard. This strategy has been widely used in image processingZhou et al.
(2021), NLPKumar et al. (2019) and reinforcement learningNarvekar et al. (2020).
However, Wu et al. (2020) recently challenges the effectiveness of curriculum learn-
ing strategies in image classification. Image classification is inherently noisy due to
ambiguities between visually similar classes. In this context, the second goal of this
project is to test whether various curriculum learning strategies are helpful for deep
learning on image classification tasks. We will analyze possible problems and make
corresponding improvements.

The structure of this report is as following:

1. In the second chapter, we will first introduces our benchmark CIFAR10-H. This
is a dataset that reflects human perceptual uncertainty for over 10,000 images.

2. In the third chapter, we investigate different kinds of difficulty scores. We
mainly focus on prediction depth and angular output margin. We measure
difficulty of samples of CIFAR10-H with different metrics and evaluate their
correlations.

3. In the fourth chapter, we test the usefulness of different handcrafted curricula
in a considerable hyper parameter searching space. As our main attempt, we
train over 900 ResNet18 models to test handcrafted curricula with different
difficulty metrics. Then we finetune a SOTA classification model with CL and
demonstrate the effect of CL on transfer learning. We also attempt to apply
this technique to training with noisy labelled data.

4. In the fifth chapter, we test automatic curricula on a toy classification problem
and extend our experience to image classification. Then we modify the SPCL
framework to embed our prior difficulty into automatic curricula.

6

2 BACKGROUND

Figure 2: Categories of difficulty

2 Background

There are two principal components for a curriculum learning strategy. The first
component is a difficulty scoring function that measures each sample’s hardness to
classification. Generally, scoring functions can be categorized into 3 classes (Figure
??). The second component is a pacing function or a training scheduler that decides
when to add in more difficult data. In this section we will first introduce different
difficulty measurement. Then we will discuss handcrafted curricula and automatic
curricula.

2.1 Human perceptual uncertainty

Human categorisation uncertainty is a natural difficulty score for image classifica-
tion. Human uncertainty quantify the amount of hardness annotators collectively
show during annotation.Although annotation can be carried out by crowdsourced
annotators on the internet, it is still costly to collect enough human decisions for un-
certainty quantification of a large dataset. If the dataset is too small, the variabilty
per class will insufficient for accurate model evaluation.

This project will involve CIFAR-10H dataset which contains over 511,000 human
predictions for CIFAR10 test set. Battleday et al. (2020) research uncertainty that
people collectively show in image classification and make this dataset publicly avail-
able. These human decisions are collected from over 2570 crowdsourced annotators
via Amazon Mechanical Turk. During annotation process, each participant was re-
quired to classify 200 upsampled images one at a time as quickly and accurately as
they can.

2.1.1 Quality control

In this large data collecting process, there is a series of procedures for quality con-
trol. Annotators must pass the initial practicing phase and get at least 75% accuracy
before entering the formal session. Label positions and presenting orders were shuf-

7

2.1 Human perceptual uncertainty 2 BACKGROUND

fled between annotators to prevent cheating. What is more, there were attention
checks where an unambiguious image was presented to each participant every 20
trials. 14 participants scored below 75% on these checks and were removed from
the final analysis. With these mechanisms, Battleday et al. (2020) filter out the pre-
dictions given by these 14 participants and the number of judgments decreased from
539910 to 511,400.

2.1.2 Data Analysis

After raw filtering, we shows the distribution of the number of judgments per image
in Figure 3. The range starts from 47 to 63 and the mean number is 51. 30.5% of
images are annotated with 51 judgments. The difference between these numbers of
judgments can be accepted. This gives more credits to human uncertainty reported
by this dataset.
Then we analyse human predictions with ground truth labels. As shown in Figure

Figure 3: Distribution of number of judgments per image

4, all classes are predicted with over 0.9 precision. Human annotators are likely
to misclassify samples of cat category as dog category. Human categorization also
shows ambiguity between deer category and horse category. The confusion matrix
shows ambiguity between classes. The matrix can be an indicator to the difficulty of
each class.

In this project, we are more interested in the human uncertainty per image as a dif-
ficulty score. We show the distributions of these human scores in histograms. Each
histogram is plotted with 100 bins. Therefore, we first visualize the distribution of
maximum confidence of human predictions across all samples of CIFAR10-H in Fig-
ure5. Over 90% of images have consistent predictions. It shows this human guess
distribution is confident about their prediction. We also compute the cross-entropy

8

2 BACKGROUND 2.1 Human perceptual uncertainty

Figure 4: Confusion matrix of human predictions

Figure 5: Distribution of maximum confidence across all samples of CIFAR10-H

9

2.1 Human perceptual uncertainty 2 BACKGROUND

Figure 6: Distribution of output magin across all samples of CIFAR10-H

Figure 7: Distribution of cross entropy loss across all samples of CIFAR10-H

10

2 BACKGROUND 2.1 Human perceptual uncertainty

loss per image to indicate whether human predictions are right or wrong. Figure 7
shows that a small proportion of images have loss larger than 2. We compare the
most confident prediction per image with the ground truth label. We find 79 images
are wrongly classified by human annotators. Then we compute a quantity called
output margin as the difference between the logit of the ground truth class and the
second-largest logit shown in Figure 6. The advantage of output margin over loss
is that there is a visually distinguishable line between correctly classified examples
and wrongly classified examples. Misclassified examples have output margins lower
than 0. Another benefit is that the second-largetst human prediction is taken into
account.
To evaluate human prediction over possibly ambiguous examples, we randomly pick

Figure 8: The first group of misclassified examples

Figure 9: The second group of misclassified examples

40 misclassified examples and visualize them in Figure 8 and Figure 9. As we can
see, ambiguity does exist in these images and lead to human uncertainty in image
classification.
Next, we analyse the average reaction time for each image in Figure 10. For con-

fident predictions, we also plot the average reaction time against maximum confi-
dence in Figure 11. Generally, human annotators react fast on images with higher
maximum confidence. The distribution of reaction time shows a different shape
from the distribution of maximum confidence. People from different age groups can
show different reaction time on the same image. Due to a lack of annotator’s age
information, we are uncertain if age is the key factor for the difference.
On top of these, we analyse human model calibration with human predictions. We

show reliability plot in Figure 12. We find the second-largest output logits are under-
confident which means output margins tend to be larger than expected. This makes
human loss a more preferable choice than output margin.

To summarise, in this project, we consider images with higher cross-entropy loss per
image as difficult images and smaller cross-entropy loss per image as easy ones.

11

2.1 Human perceptual uncertainty 2 BACKGROUND

Figure 10: Distribution of average reaction time across all samples of CIFAR10-H

Figure 11: Average reaction time of images with over 0.9 confidence

Figure 12: Reliability diagram of human predictions

12

2 BACKGROUND 2.2 Pretrained deep difficulty metrics

2.2 Pretrained deep difficulty metrics

2.2.1 Output margin

Output margin, also known as classification margin, is defined as the difference be-
tween the logit of the ground truth class and the second-largest logit. Generally, the
deep learning model exhibits larger output margins for easy samples. Output mar-
gin is widely used as baselines in difficulty measurement literature (Toneva et al.,
2019; Baldock et al., 2021). Soudry et al. (2018) demonstrate that overtraining
with negative loglikelihood give rise to large output margins. (Baldock et al., 2021)
refer output margin as “local simplicity”. They intervene the output margin of a
network with Hinge Loss to control difficulty score they propose. An advantage of
output margin is its flexibility. This quantity can be easily modified to work with
other mechanism. For example, Toneva et al. (2019) creates the notion of misclassi-
fication margin by dividing the output margin with forgetting events.

Although output margin is easy to compute, this metric is sensitive to model calibra-
tion and architectures. To make this metrics more stable, it is a common practice to
train an ensemble and use the average output margin.

2.2.2 Forgetting events

Toneva et al. (2019) defines a forgetting event as an example’s accuracy decreases
between two consecutive updates. Put it simply, “forgetting” signifies that an in-
stance is correctly categorized at step t but wrongly categorized at step t +1.

From the definition, it is too costly to monitor forgetting events as it requires comput-
ing the predictions for all data points of the current training set. To practically com-
pute example forgetting events, they lower bound true example forgetting events
in a mini-batch gradient descent fashion. Specifically, general example forgetting
events can be computed in two main steps as follows. One first trains a single clas-
sifier on a given dataset and record the statistics (loss, accuracy, misclassification
margin) for each example when they present in the current mini-batch. In the sec-
ond step, one computes number of forgetting events per example and sort examples
by forgetting counts.

Samples that are never learnt are given the maximum number of forgetting events
of the current dataset. They analyse the metric on its stability across different ran-
dom seeds, numbers of training epochs and different architectures. Using Spearman
rank correlation, they empirically proves the metric’s consistency across five random
seeds, 75/200 training epochs and various CNN models.

As for the weakness, considering that accurate classification could be produced by
chance mostly in the case of a small number of classes, “forgetting” may be prob-
lematic. In this regard, it is hard to determine whether a “forgotten” example was
learned initially. To be more specific, Toneva et al. (2019) quantify “chance” forget-

13

2.2 Pretrained deep difficulty metrics 2 BACKGROUND

Figure 13: Measuring structural regularities of training samples with C-score

ting by analysing the forgetting rates with random gradient updates as follows. The
“base” classifier is first cloned into a new “clone” classifier with the same random
weights at the beginning of training. Then, the shuffled backward gradients of the
base classifier are copied to the clone one. Finally, the forgetting events reported by
the clone classifier are computed in the exact two main steps as the base classifier.
With a forgetting events histogram, they empirically show CIFAR10 training exam-
ples can be randomly forgotten at most twice. This means the unforgettable (easy)
samples are plausible and difficult ones are likely to be not.

2.2.3 C-score

C-score (Jiang et al., 2020) model structural regularities of the training data by esti-
mating the probability of correct generalization for a specific validation set. Accord-
ing to their observation, deep learning models learns simple functions from regular
samples and memorize complex functions from irregular samples. As a result, simple
functions generalize well and achieve high accuracy while complex functions gener-
alize poorly and have lower accuracy. As illustrated in Figure 13, it takes less regular
samples to get a good generalization but it takes a lot more for irregular ones.
Since samples of different regularities are mingled, the only way to compute this

quantity is through Monte Carlo sampling. As shown in Figure 14, one randomly
samples a subset of training set and compute the validation accuracy with the re-
maining data. Then this score is given equally to the train split as regularities of
these samples. In their paper, they train 2000 models to perform Monte Carlo esti-
mation. Their work is the first of its kind and can be theoretically useful for curricu-
lum learning, active data selection and outlier detection.

However, there exist several problems for this novel difficulty metric. First, it is very
difficult to find the optimal ratio between train split and test split. With a larger test
split, the evaluation becomes more precise, but it also means more runs to evaluate
all data. With less training data, model also suffer higher risk of overfitting and pre-

14

2 BACKGROUND 2.2 Pretrained deep difficulty metrics

Figure 14: Measuring structural regularities of training samples with C-score. To imple-
ment this, one runs multiple runs and splits the training and validation split randomly
in each run. This ensures both splits come from the same distribution. Then, one trains
a model on the training split and test it on the validation split. Next, one computes
the average accuracy and assign this regularity score equally to examples in the training
split. After hundreds of runs, one averages across all runs and gets the regularity scores
for all samples.

15

2.2 Pretrained deep difficulty metrics 2 BACKGROUND

dict meaningless results. Currently, the optimal ratio is found by grid search which
is infeasible for most people. Second, Monte Carlo sampling requires so much com-
putational resource that makes computing C-score infeasible for most people. Third,
there is a shortage of theoretical support justifying C-score relates to regularities.
One way to test C-score is through visualizing examples along with their C-scores.
In this project, we opt to test C-score with curriculum learning.

2.2.4 Prediction depth

So far, we have discussed difficulty scores defined by the labelling functions of neural
networks. These metrics mainly focus on the output logits of the final fully connected
layer and fail to fully utilize the hidden representations from the intermediate layers.
Recent findings have shown deep models learn easy data and simple functions first
Stephenson et al. (2021). And deep neural network layers converge from the input
layer towards the output layer Raghu et al. (2017). Therefore, one can measure
example difficulty intermediate convergence with k-NN classifiers plugged in the in-
termediate layers. Baldock et al. (2021) introduce a difficulty score called prediction
depth that utilize the natural clustering effects of deep learning models.

Figure 15: the mechanism of prediction depth

DDBased on discriminative hidden representations, prediction depth defines exam-
ple difficulty as the earliest layer where all the subsequent intermediate predictions
converge to a fixed label Baldock et al. (2021). As shown in Figure, one can place
multiple k-NN probes after certain layers in a neural network. With the labels of
a support set, each k-NN classifier outputs a prediction determined by the distance
between features. If the predictions from a layer and its successors converge to the
same label, one can record the number of the first layer where convergence begins.
Based on this score, input data are stratified into several difficulty levels. With a
single model, an example’s prediction depth can only be an integer. One can split

16

2 BACKGROUND 2.2 Pretrained deep difficulty metrics

the input data randomly and train an ensemble with the same architecture in a
supervised learning fashion, and then take the average prediction depth across mod-
els. This extends prediction depth to continuous and facilitates more precise data
scheduling.

(a) Attracting (b) Repelling

Figure 16: Contrastive loss pulls similar faces together and push dissimilar faces away

2.2.5 Deep metric

As a metric, difficulty score can be directly measured on abstract representations
learnt by deep neural network. This idea connects difficulty measurement to deep
metric learning.

Generally, deep metric learning (DML) methods fall into two major categories de-
pending on the type of supervision available. Weakly supervised DML is designed
for data that are in pairs, triplets or n-pairs. With a form of contrastive loss, these
weakly supervised machine learning methods attract similar samples and repel dis-
similar samples. As shown in Figure 16, traditional contrastive encourage pulling
positive samples together while pushing negative samples out of a margin. Recently,
infoNCE loss is introduced to modern contrastive learning, and it allows efficiently
attracting and repelling n-pairs. Interestingly, supervision comes in the form of data
augmentation and these methods are fancily named self-supervised learning.

However, the contrastive loss is unsuitable for supervised learning. This is mainly
because the methods mentioned above need to intensively sample from classes to
generate pairs in the data pre-processing stage. Another problem is the attracting
and repelling are at the instance level, so convergence is often slow due to a lack of
global structural information. By contrast, supervised deep metric learning methods
efficiently find a target space by pulling samples of the same class together while
pushing samples of different classes away. One can use different forms of distance
to describe similarity in the latent space. If one believes the latent space is a Eu-
clidean space, he can take the average of representations of the same class/cluster

17

2.2 Pretrained deep difficulty metrics 2 BACKGROUND

as class/cluster centroid. To maximize discrimination between classes, Center loss
Wen et al. (2016) adds intra-class variances to cross-entropy loss. This loss function
encourages the representations of the same class to be closer.

Some researchers believe that category labels are not accurate enough to describe
similarities. So they introduce clustering and use the pseudo-labels generated by
clustering for supervised learning. Instead of retrieving a class of samples, Magnet
loss (Rippel et al., 2016) applies a clustering algorithm on representations and as-
sign samples with fine-grained cluster indices. Then the algorithm pulls the samples
of the same cluster together while pushing samples of different classes apart. As a
result, the intra-class variance can be controlled in a proper range and the diversity
is maintained. SPL-ADVisE uses the Magnet loss as a difficulty score and applies
self-paced learning on image classification.

SpCL learns a joint representation space for domain adaptation with contrastive loss
and curriculum learning strategy. They have labelled data on the source-domain
and the representations are learnt in a supervised learning fashion. As for target
domain, there is no label and training is done with self-supervised learning. If one
only apply contrastive learning at instance-level, he will not get a high accuracy due
to a lack of global structural constraints. Their idea is to perform DBSCAN on the
latent space twice with a changing hyperparameter. This will give each cluster an
IoU.They define and control the compactness of each cluster with this IoU. Samples
belongs to a compact cluster are considered as easy samples and samples belongs
to a loose cluster are considered as difficult samples. They train easy samples with
cluster pseudo-labels and difficult samples with contrastive loss. This allows them to
achieve SOTA performance in person re-identification task.
Alsharid et al. (2020) apply curriculum learning to multi-modality by measuring the
similarity between the embeddings of video frames. The difficulty can be measured
by the Euclidean distance between the current frame and all others in the dataset.
When the distance is small, the new frame is considered as an easy sample and
added into training.

2.2.6 Other deep learning scores

Jiang et al. (2019) introduces the adversarial input margin, and linearly approx-
imate this quantity with a ratio between output margin and adversarial gradients.
This denotes the smallest norm for an adversarial perturbation to change the model’s
class prediction.

Based on the background study, we can summarize two hypothesis for difficulty mea-
surement. First, an ideal difficulty scoring function needs to accurately reflect true
example difficulty with regard to downstream tasks. The latter property implies the
hardness of defining difficulty due to its multiple definition even in the same down-
stream task. For example, in the well-known linear regression with clean data, if
we have an optimal linear regressor with parameters w∗ (least square solution), the

18

2 BACKGROUND 2.3 Curriculum learning methods

example difficulty can be intuitively defined as distance between prediction ŷ and y.
Nevertheless, example difficulty can be defined from optimization perspective when
the problem size is large.

Second, a good difficulty scoring function should have certain mechanisms to en-
force smoothness. This property will facilitate training scheduler design. This hy-
pothesis can be easily explained with an extreme case. Let us consider measuring
example difficulty with static binary labels. Here, “static” means example difficulty
can only be evaluated once as either 0 (easy) or 1 (hard) and cannot be changed
afterwards. In this situation, the choice of scheduler is limited to a step function
that decides when to add all difficult samples in. This strategy is paradoxical as sam-
ples should not be equally important in curriculum learning. If one insists on using
binary /one-hot predictions to measure difficulty, then the difficulty measurer must
include mechanism to smooth the binary / one-hot outputs.

2.3 Curriculum learning methods

2.3.1 Predefined curricula

Paced learning (PL) manually designs a curriculum with precomputed difficulty
scores estimated by difficulty measurers. Specifically, PL first sorts training data from
easy to hard with difficulty scores. Then the method uses a scheduler, also known as
pacing function, to decide when to add in more difficult data. With a learning rate
annealing strategy, the method dynamically scales down the updates from difficult
samples.

Generally, scheduling strategies fall into two forms, discrete scheduling and contin-
uous scheduling. Discrete schedulers split data into a predefined number of buckets
and add in more difficult data when it detects performance stagnation.

Algorithm 1 Discrete training scheduler

Input: S:training dataset; M: difficulty measurer;
Output: W ∗: optimal model parameters
S,order← sort(S,M); . sort S from easy to hard
[S1,S2, ...ST] = S
Strain = φ
for t = 1,2, ... T do

Strain = Strain ∪ St . add in more difficult samples
while not stagnate train for k epochs do

train(Strain,M) . apply normal mini-batch training
end while

end for
return W ∗

Baby step schedulers are the most widely adopted discrete scheduler (Bengio et al.,

19

2.3 Curriculum learning methods 2 BACKGROUND

Figure 17: Linear pacing functions

2009; Wang et al., 2021). As shown in Algorithm 1, this scheduler first puts sorted
training data S into buckets St from easy to hard. Then training starts from the
easiest bucket S1. Next, the algorithm performs standard mini-batch training for k
epochs until the model converges on the current subset. Then the algorithm adds in
next difficulty level bucket St into the training subset. The algorithm repeats these
two steps until all buckets are added and exploited. Finally, training either stops or
continues with all data for several epochs, and outputs the model parameters. The
baby step scheduler usually shuffles data within each bucket and then sample mini-
batches for training instead of using all data. Baby step schedulers are simple and
build a strong curriculum learning baseline(Spitkovsky et al., 2010).

One-pass is another discrete scheduler that is less used than the Baby step(Wang
et al., 2021). The difference between the two is in updating. One-pass scheduler
switches to the next difficulty level bucket while discarding data learnt before. This
leads to catastrophic forgetting which is often reported in continuous learning liter-
ature. The limitation of a discrete scheduler is that the performance is sensitive to
the number of buckets and designers have to tune this hyperparameter manually.

As an alternative, continuous schedulers can add in hard data at every iteration
or epoch with pacing functions. Pacing functions are a group of monotonic non-
decreasing functions. As shown in Figure 17, b denotes the initial percentage of data
when the training starts. aT denotes the iteration where all data are added.

There exists a variety of pacing functions in CL literature. However, we focus on
three types of pacing functions in this project. Shown in Figure 17, linear function
are the most straightforward pacing function that adds data into training subsets
from easy to hard linearly. Root function, shown in Figure 19 is concave and spends
more time on difficult samples than a linear function. By contrast, the quadratic
function, shown in 18 spends more time on easy samples.

20

2 BACKGROUND 2.3 Curriculum learning methods

Figure 18: Quadratic pacing functions

Figure 19: Root pacing functions

21

2.3 Curriculum learning methods 2 BACKGROUND

Although the data adding process has become easy in continuous schedulers, the
relative improvement to other schedulers is not drastic. Wu et al. (2020) adopts a
variant of the continuous scheduler in their work and shows curriculum learning im-
proves model convergence and the performance of training with noisy labelled data.
However, their conclusion that curriculum learning does not help standard train-
ing remains arguable because their data loaders shuffle samples across data buckets
which severely damages the global difficulty structure1. We believe ties are broken
when shuffling the original dataset.

2.3.2 Automatic curricula

Kumar et al. (2010) initially designs a self-paced learning (SPL) strategy inspired by
the learning process of humans that gradually incorporates easy to complex data into
training. This learning strategy considers an automatic curriculum as a weight vec-
tor and update this weight vector with the current model’s feedback. Unliked fixed
handcrafted curricula, the adaptive design makes the curricula learnt by SPL evolve
with the current model. The loss functions of SPL generally follow the paradigm
proposed by Kumar et al. (2010) which consists of a weighted loss term and a reg-
ularization term for the weight vector. SPL alternatively updates model parameters
and curriculum weights with batch gradient descent (Jiang et al., 2018). The reg-
ularisation terms are often convex functions that allow the weight vector to have
closed-form solutioin. Since curriculum get updated independently, it works as an
off-the-shelf tool to other machine learning algorithms Ge et al. (2020).

SPL has achieved good performance on computer vision and NLP tasks (Cirik et al.,
2016); (Zhang et al., 2018)).Pentina et al. (2014) apply self-paced learning strate-
gies to multi-task learning where SVM learns to perform a sequence of tasks from
easy to hard. SPL has also becomes a hot spot in Reinforcement learning (Klink
et al., 2020); (Kumar et al., 2019); (Narvekar et al., 2020)).
For image classification, SPLD (Jiang et al., 2014) combines the SPL algorithm and
clustering to consider the diversity of samples during image classification. Mentor-
Net (Jiang et al., 2018) estimates curriculum weights with RNN models use mini-
batch SGD for better convergence.

Self-paced curriculum learning (SPCL) develops a paradigm where teacher and stu-
dent can learn collaboratively (Jiang et al., 2015). It bridges the gap between hand-
crafted curricula and automatic curricula. In SPCL, the teacher can propose an out-
line for the curriculum that offers key guidance in the initial stage. According to the
teacher’s advice, students can learn specific knowledge at their own pace. To achieve
this, precomputed difficulty scores are embedded into SPL as constraints. When the
constrained optimization problems are convex, one can still compute the weight
vector analytically. By contrast, if non-convexity exists, one must find the solution

1Readers may check their implementations (Wu et al., 2020)

22

2 BACKGROUND 2.4 Confidence and model calibration

for curriculum parameters numerically. ulty scoring function should be accuratee-
nough to reflect example regularity or ambiguity. By “accurate enough”, wemean
the scores are distinguishable for sorting. Therefore, it is crucial to In this project,
we opt to test the performance of SPL on image classification and the advantage of
using mini-batch SGD over batch GD.

2.4 Confidence and model calibration

Confidence is the probability predicted by the classifier of a specific class. Overcon-
fidence and underconfidence are measured by model calibration. A highly accurate
model is overconfident for a class if the class predictive probability is higher than the
accuracy of that class. Model calibration plays two roles in this project. First, model
calibration can be used to rescale neural network’s outputs for difficulty measure-
ment. An efficient difficulty measurer prefers output probabilities over maximum
predictions. To make output probabilities plausible for difficulty measurement, the
model should be calibrated so that the probability corresponds to the proportion of
samples being classified correctly. Second, when the dataset has noisy labels, an
intuitive solution is to set a threshold on example loss and filter out noisy samples.
This requires precise output probabilities.

One way to measure the degree of calibration is to compute Expected Calibration Er-
ror (ECE). For binary classification, the method separates data into different bins ac-
cording to their probabilities of positive class and calculate the accuracy of samples in
those bins. Then the method computes the absolute error between the average con-
fidence and the average accuracy for each bin. Finally, the method does a weighted
average of these absolute errors across all bins. Reliability diagram? provides a pop-
ular visualization with equally-spaced bins and plots the confidence against accuracy.
The plot of a well-calibrated model should show a diagonal pattern. For multi-class
classification, ECE takes the maximum confidence of all probabilities. Classwise ECE
replicates the previous binning strategy for each class independently and takes an
even averaging across different classes at the end. Recent calibration metrics put
more focus on the most confident predictions or predictions under thresholding be-
cause they are used more often. Specifically, Nixon et al. (2019) loops through dif-
ferent classes and first sorts the predictions based on confidence. Then the method
thresholds small confidence predictions out. Then the method finds adaptive bin in-
tervals so that each bin contains a similar number of predictions. Finally, the method
takes a weighted average across all bins to get TACE.

Recalibration can be easily applied with post-processing. Platt scaling is a test-by-
time parametric method. To apply Platt scaling, one simply fixes the weights of a
model, takes the output logits, and trains an extra linear layer with a hold-out val-
idation set. This is called the matrix scaling version of Platt scaling. Guo simplifies
this matrix with a single scalar T and their method is known as temperature scaling.
They also show that neural networks can achieve higher accuracy in the sacrifice of
worse calibration. TACE (Nixon et al., 2019) and (Guo et al., 2017) evaluate several

23

2.4 Confidence and model calibration 2 BACKGROUND

calibration methods including variants of Platting scaling, variants of histogram bin-
ning, isotonic regression and Maximum Mean Calibration Error. It has been shown
that variants of Platt scaling especially temperature scaling achieve a higher ECE.

Implicit model calibration methods have recently become popular in image clas-
sification(Müller et al., 2019) and image segmentation(Islam and Glocker, 2021).
Despite a lack of theoretical support, these studies show strong evidence that label
smoothing implicitly improve generalization and calibration. A plausible explana-
tion is that training with soft labels enforces data to lie in tight equally separated
clusters in the latent spaceMüller et al. (2019).

24

3 DIFFICULTY METRICS

3 Difficulty Metrics

3.1 Model calibration

As discussed in section 2, deep learning models need to be calibrated before difficulty
measurement. In this subsection, we evaluate different types of model calibration
techniques to understand how to wisely choose them for different metrics.

We first randomly split the CIFAR10 with 90 percentage of data for training and 10
percentage of data as hold-out validation set. We train a ResNet18 model on the
train split for 350 epochs to make it overconfident over its accurate predictions. The
weight decay parameter equals 5e−4. We use a cosine annealing learning rate sched-
uler that starts from 0.1 and ends with 0. We use the standard data augmentation
technique for CIFAR datasets that includes random crop with padding, random hor-
izontal flip and normalization. Then we use the validation set to implement model
calibration. We apply Temperature scaling by dividing the output logits of the neural
network with a temperature parameter. Next, we freeze the model parameter and
train this single temperature parameter on the validation set for 10 epochs with an
Adam optimizer whose learning rate starts from 0.001. After it converges to 2.50,
we record ECE and ATCE with binning. We have done a grid search over this tem-
perature parameter and get similar results. We plot the reliability diagram along
with bin strength in Figure20 For Brier Score we keep the same experimental setup
except changing our loss function to an L2 loss. This gives us a temperature of 1.04.

However, for label smoothing, we retrain a ResNet18 model from scratch with soft
labels and the same configuration. For soft labels, we decrease the confidence of
the ground truth class from 1 to 0.95 and split 0.05 to equally to other classes, and
then we minimize the negative loglikelihood with soft labels. We also switch the
loss function as Focal loss and set γ as 2 to prevent overconfident predictions. The
reliability diagrams of Label smoothing and Focal loss are shown in Figure21 and
Figure22.

We compare the results of different model calibration techniques in Table 1

Table 1: Calibration methods’ performance on noisy labelled data detection

Post ECE ATCE AUC(ε = 0.2) AUC(ε = 0.4)

Human No 0.0375 0.0067
Platt Scaling Yes (2.50) 0.0275 0.0049 0.979 0.979
Brier Score Yes (1.04) 0.0252 0.0044 0.984 0.986

Focal Loss (γ=2) No 0.0338 0.0046 0.984 0.984
LS (γ=0.05) No 0.0306 0.0062 0.021 0.947

25

3.1 Model calibration 3 DIFFICULTY METRICS

(a) Reliability diagram (b) Bin strength

Figure 20: Reliability diagram and bin strength of Temperature scaling

(a) Reliability diagram (b) Bin strength

Figure 21: Reliability diagram and bin strength of Label smoothing

(a) Reliability diagram (b) Bin strength

Figure 22: Reliability diagram and bin strength of Focal loss

26

3 DIFFICULTY METRICS 3.2 Prediction Depth

3.2 Prediction Depth

To distinguish different forms of difficulty, we calculate two prediction depth values
for each data point. The first group of PD evaluate the specific training split used to
train the model, and we define them as train split PD. These quantities are likely to
be biased estimation of true difficulty as the support set are used for training. The
other group of prediction depth values use the validation split as their support set.
The calculation is similar with cross validation which means they are unbiased. We
run multiple runs. Each run gives us train splits evaluation and test split evaluation.
Averaging across these runs leads to two group of more stable prediction depth val-
ues.

3.2.1 On two dimensional difficulty

Baldock et al. (2021) did not publish their code, and we write down our implemen-
tation are as follows. The algorithm is as follows.

1. To begin with, we place k-NN probes in DNNs to get intermediate predictions.
In MLP, probes are constructed after dense operations and the softmax. In
CNN, probes are placed after convolution and before the pre-activation.

2. In each run, we randomly split the dev set into the training split and validation
split and hold-out with 8:1:1. We train a ResNet18 model on the train split
with standard i.i.d. training. We freeze the model parameter and use it as a
feature extractor for the following steps.

3. To evaluate each point in the validation split with train time PD metric, we
extract and normalize the intermediate features of data in the train split. We
calibrate k-NN probes with Temperature scaling before classification. We create
a search grid for k-NN temperature parameters and compute ECE on the hold-
out set. Then we apply k-NN classification and recorder intermediate labels.
Whenever we classify a data point with k-NN, we use the specific training split
used to train that model as the k-NN support set. In this way, we do not need
an extra support set. We compute PD by reversing the list of k-NN predictions
and record the depth when misalignment occurs.

4. We compute PD for each sample in the train split following the similar way as
in the third and fourth steps. The only difference is when calculating the PD
for a point in the training split, we leave this point out of the k-NN support
set. Specifically, we find the k+1 nearest neighbours from the training split
and then delete the closest.

5. Finally, to get stable example difficulty, we repeat 2-5 for multiple runs with
different random seeds. We take average over these runs for train split PD and
test split PD separately.

27

3.2 Prediction Depth 3 DIFFICULTY METRICS

After training 64 ResNet18 models on CIFAR100 , we plot the train split prediction
depth against the validation split prediction depth in a two dimensional histogram
as Figure. We visualize the samples in the 4 corners of this 2D space. Easy data are
with low PDtrain and low PDvalidation. They are typical examples of their classes.
These samples can be easily classified, and their predictions match ground truth la-
bels all the time. Ambiguous without labels data (Low PDtrain, Low PDtrain often
include visual contents that both look like their ground truth classes and another
class. These features can be informational and reside on the decision boundary
of classifiers. Ambiguous samples (High PDtrain, High PDvalidation) suffer from low
resolution, low contrast or object occluded. The randomness of training can often af-
fect their prediction. Data look like a different class (High PDtrain, Low PDvalidation)
include confusing features of another class. These samples are disconnected from
other samples of the same class. They can be memorized during training but are
always misclassified during validation.

Figure 23: 2D histogram of train split prediction depth and test split prediction depth
CIFAR100 images

Additionally, we choose an equal number of samples of these four difficulty forms for
further investigation. For each layer, we plot the mean k-NN probe confidence of the
ground truth class against accuracy. This is another visualization of how an ensem-

28

3 DIFFICULTY METRICS 3.2 Prediction Depth

Figure 24: k-NN probe’s confidence of the ground truth class against accuracy. For
samples that are ambiguous without labels, the accuracy of k-NN classifiers reaches the
peak at the middle and then drops.

ble reacts to samples with different difficulties. Interestingly, the maximum accuracy
and confidence of ambiguous samples without labels reach a peak at the fifth layer,
where a better classification can be found. The downward trend of samples that look
like a different class indicates the wrong prediction becomes more confident as the
image goes deeper. For samples of the other two difficulty forms, the maxima are
at the last layer. We then visualize the confidence of the ground truth class of mis-
classified ambiguous w/o labels samples. It have been shown that the model indeed
gradually becomes more and more confident about its incorrect predictions. This
observation aligns with several recent literature. The searching process is detailed
as follows. To begin, the dataset is split with different random seeds for ensem-
ble training. We tune the number of the ensemble with [4,16,64] ResNet18 models
trained with two partitioning strategies as [5 : 5,8 : 2] on CIFAR10-H. After some trial
and error, we opt to train 64 models using 8 : 2 random partitions for CIFAR100. For
hyper tuning, we performed 100 epochs of standard i.i.d training with stochastic
gradient descent. For both CIFAR10H and CIFAR100 datasets, we choose the 3 most
accurate and stable training configurations. Next, we add a learning rate scheduler
that reduces the learning rate with a cosine function. We also implement MLP and
VGG16 for PD evaluation. Although we do not have enough time to well tune the
VGG16 ensemble, we observe a similar result shown in Fig. The results of using 30
and 300 k-NN neighbours are consistent (Figure26;Figure27).

29

3.2 Prediction Depth 3 DIFFICULTY METRICS

(a) 1st k-NN (b) 3rd k-NN

(c) 4th k-NN (d) 9th k-NN

Figure 25: Deep k-NN becomes more confident on its misclassified predictions as it goes
deep

3.2.2 Discussion

Currently, there exist two problems with prediction depth. Firstly, a problem shared
by PD and C-score is how to find proper random splits for a new dataset. On the one
hand, if the test split is too large, the model will suffer from overfitting, and predic-
tive error will be large. This leads to inconsistent predictions across the layers and
PDs are large for most of the samples. On the other hand, if the train split is large,
it takes more models to evaluate validation time PD. We use 5 : 5 training and val-
idation splits as a comparison. Figures have shown 8 : 2 data splitting works better
than 5 : 5. The gap between training and testing becomes smaller which shows less
overfitting. In the 2D histogram, more samples move to the upper right region as
ambiguous. For CIFAR10-H, patterns of difficulty reduce to two. Sharp and narrow
spikes appear in the histogram which causes trouble for training data scheduling.

Searching for k nearest neighbours in a big support set can be an engineering prob-
lem in terms of time and memory. With a large feature bank, computing the simi-
larity matrix can cause memory overflows when operations include memory copying
or garbage collection are not carried out swiftly. For instance, if we use the entire
CIFAR100 as the support set, the feature bank of the first three layers takes up 4.9
gigabytes of memory. An efficient way is to implement k-NN classification with Face-
book AI Similarity Search (FAISS) library. Under the hood, it uses multi-threading
to perform parallel searches on multiple GPUs and BLAS libraries to optimize matrix
multiplication.

30

3 DIFFICULTY METRICS 3.2 Prediction Depth

Figure 26: Overconfidence would allocate a weight in the greatest resemblance to the
most adjacent k-NN neighbour and wipe out the results from other neighbours. For easy
samples, this means all examples are given the same PD values as ”easy”. By contrast,
for ambiguous samples, inconsistent predictions will appear across layers, and samples
will be seen as equally ”hard”.

Figure 27: confidence of knn3

31

3.3 Angular output magin 3 DIFFICULTY METRICS

Secondly, deep k-NN classification relies heavily on the natural clustering effects of
deep neural network and model calibration. Inconsistency can present when model
is overconfident or underconfident. This is also probably because no explicit con-
straints are given on the intermediate latent spaces. Even though cosine distance
removes the magnitude of representations, hidden features may not preserve the
same angular commonality due to the strong non-linearity posed by the neural net-
work.

Given a certain amount of training data, one can expect prediction depth to be “re-
liable enough” when a minimum classification rate is reached. For a larger scale
dataset with many classes, this mean a larger train split and more runs.

Finally, the blue curves indicate the intermediate layer where the model captures
better knowledge of ambiguous samples without labels than other layers. This op-
portunity motivates us to develop difficulty aware knowledge distillation in our fu-
ture work.

3.3 Angular output magin

Motivated by two types of difficulty offered by human categorization, we hypothe-
size an ideal difficulty measurer should take both inter-class and intra-class variance
into account. Inter-class variance maximization directly relates to classification by
maximizing between-class distance. By contrast, intra-class variance reflects within-
class distance and can affect difficulty measurement in a less observable way. When
objects are photoed with low resolutions or partially occluded, annotators can pos-
sibly infer the labels with background information according to their knowledge.
Let us make this more specific with an example. Dogs and deers are more regu-
lar grassland visitors than cats. Being on grass may encourage human annotators
to inference and vote for these two animals rather than cats when occlusion oc-
curs. Consequently, with the same amount of difficulty from objects, a grassland
background helps us more with labelling a deer than a pile of white background.
Intra-class variance can also contain ambiguous content that resemble features of
another class. Therefore, it is probably safe to conclude that intra-class variance also
plays an important role in inferencing the right class.

3.3.1 Inter-class variance and intra-class variance

Here, we build a toy binary classification example to better illustrate this issue and
show its connection to representation learning. In Figure, data of two classes are
generated from two clusters. As discussed in section 2, an ideal difficulty metric
should be precise and generalize to downstream tasks. Specifically, the metric should
reflects sample regularity and hardness w.r.t classification. In this case, the first term
can be measured by distance or similarity with ground truth class representations.
The second term can be calculated by distance to the decision boundary.

32

3 DIFFICULTY METRICS 3.3 Angular output magin

Figure 28: Balancing the right amount of variance

We use two counter examples to highlight the importance of learning a “correct
enough” latent space from data with Figure 28. We use neural networks with ReLU
activation functions to project input points so the projection is nonlinear. In the
first counter example, we use the an objective function of that is similar to LDA to
optimize the projection. That is to maximize between-class variance and minimize
within-class variance. This leads to a latent space where samples of the same class
are projected into a virtually tiny region as shown in the right subplot. Although
centres of two classes can be easily estimated, samples are almost equally close to
their centroids and far away from the decision boundary. Their difference in terms
of difficulty becomes indistinguishable. In the second example, as shown in the
left subplot, the intra-class variance is too large and inter-class variance is not large
enough. Data points are scattered loosely in the projected plane. As a result, means
are not very representative as class representations for members of that category.
Additionally, there are always samples of the same class falling on different sides of
any potential decision boundary. It is therefore improper to use distance to the deci-
sion boundary as difficulty score as the projected plane is improper for classification.

These two counter examples highlights balancing the right amount of inter-class
variance and intra-class variance is a important factor to difficulty measurement. So
in this section, our goal is to find such a latent space where these two classes of
variance easy to compute and well-balanced.

3.3.2 Find a space with deep metric learning

Deep metric learning (DML) methods provide paradigms for this purpose by learning
a space where similarity can be easily measured and compared. These approaches
have shown promising results in image classification and have been widely used in
zero-shot learning, face verification and person re-id. A large number of methods
has studied the image classification problem on the latent space with all kinds of
distance metrics, but the problem of measuring difficulty on the latent space has not
been fully investigated.

In image classification, data are high dimensional and a shared problem of these

33

3.3 Angular output magin 3 DIFFICULTY METRICS

Figure 29: Image representations are projected to an angular spaces

34

3 DIFFICULTY METRICS 3.3 Angular output magin

Euclidean methods is that the means estimated in the latent space are sensitive to
noise. As an alternative, cosine distance removes the magnitudes of the two high
dimensional representations and measures the similarity with their angle. After nor-
malization, image representations are projected on a hyper sphere shown Figure 29.
Over the last few years, a group of softmax losses are proposed to maximize dis-
crimination in classification problems. Angular softmax Li et al. (2018) initially nor-
malize the speech representations and the weight parameters of a softmax classifier
before computing cross-entropy loss. This allows them to measure class representa-
tions during mini-batch training. Following this work, in image classification, Deep
spherical embeddings (SphereFace)(Liu et al., 2017), Large margin cosine loss (Cos-
Face)(Wang et al., 2018), and Additive angular margin Loss (ArcFace)(Deng et al.,
2019) further reduce intra-class variance by adding a margin on angles or cosine
terms.

However, these methods mainly focus on discriminating features of different classes
on the latent space. Our goal is to find a better space (hyper ball) where difficulty
scores are well-defined (well calibrated) shown in Figure32. In other words, one can
find a balance between inter-class representations and intra-class representations
on this latent space. Following (Wang et al., 2018), we find a proper difficulty
metric by first train a candidate latent space for difficulty measurement with angular
(normalized) softmax classifier. Formally, the probability of sample i being in class
yi is modelled by angular softmax classifier as

P (yi |Ŵ ; r̂) = f (Ŵ ,gφ(x̂i)) (3.1)

Ŵ =
W∥∥∥W ∥∥∥ (3.2)

r̂i =
ri
‖ri‖

(3.3)

ri = gφ(x̂i) (3.4)

where ri ∈ Rd are the angular representation of the input sample xi; ri is the nonlin-
ear projection provided by a parametric feature encoder gφ. W ∈ RCxd is the weight
of the final linear layer of the softmax classifier. Given normalized representations
vectors, the cosine can be easily computed by the inner product of wk and ri . We can
jointly optimize φ and W by minimizing the negative log likelihood as

L =
1
N

N∑
1

− log
exp((Wyi · ri)/t)∑
k exp(Wyk · rk)/t

(3.5)

cosθ(Wyi , ri) =W
T
yi ri (3.6)

where t is the temperature which is widely used in contrastive learning representa-
tion learning, θ is the angle between the kth row vector wk of weight W and angular
representation ri .

We train the feature encoder on CIFAR10-H for 100 epochs and test the model on
CIFAR10 training set. We get the following training dynamics in Figure 30. Note

35

3.3 Angular output magin 3 DIFFICULTY METRICS

that CIFAR10-H only have 10,000 samples.
Like training with cross-entropy loss, softmax classifier can get overconfident and

(a) Accuracy (b) Loss

Figure 30: Training dynamics of normalized softmax classifier

(a) 1 epochs (b) 10 epochs

(c) 60 epcohs (d) 100 epochs

Figure 31: Visualization of angular space

the generalization gap becomes obvious after 60 epochs. Even when the model is
trained with label smoothing, it overfits the soft labels. The model possibly begins
to memorize ambiguous samples and learn a complex function. For representation
learning, a traditional way to prevent overfitting is to apply early stopping with a
k-NN monitor on a hold-out set(He et al., 2020). This can be complex for a small
dataset, we introduce a post processing strategy as alternative to alleviate the influ-
ence of overfitting.

36

3 DIFFICULTY METRICS 3.3 Angular output magin

To better understand the latent space we learnt, we freeze the parameters of the
feature extractor and finetune two FC layers on top. This visualization technique
quite popular in recent studies (Müller et al., 2019). Figure 31 shows the positions
of CIFAR10-H examples on the latent space.

For Large margin softmax loss, when the cosine distances are smaller than the mar-
gin, the function values are pushed towards the saturation area of the softmax func-
tion. This results in weaker backpropagate gradients and hence a slower conver-
gence than NSL. Notably, if the margin is initially set too large and the batch size is
small, the gradients can be dominated by a few data points and the update directions
can be noisy. This issue leads to an uneven angular space.

3.3.3 Which angle for difficulty

Figure 32: Compute angular output margins with the gap between top2 cosine distance

Since we have modeled the probability with scaled cosine values. It is natural to
measure difficulty scores as the angle between example representation and its class
representation. We explore how to estimate class representations and conclude three
different ways. The traditional way is to compute the mean of sample of the current
class. Although this method is straightforward, it is sensitive to noise. Another way
is to estimate class representations with a support set compose of pristine examples.
This method borrow the idea of (Patrini et al., 2017) where they measure the noise
transition matrix with pristine class example to tackle label noise. Since we have
human scores at hand, we use the top 10 examples as our support set. The refined
class representations are shown in Figure 33. The third way is to estimate Ŵ ∈ RCxd
as class angular representations because Ŵ exactly has C vectors as the number of
classes. If we directly use W, it will be very noisy due to mini-batch training so we
keep a buffer for W and update it with momentum. This is similar with the update
rule of the memory bankHe et al. (2020). Here we use the angular gap instead of
the angle between example representation and its class representation because the
latter is exactly the output logit. The angular gap is similar with the output margin

37

3.3 Angular output magin 3 DIFFICULTY METRICS

Figure 33: Angular gap is the difference between the cosines of top2 predictions

38

3 DIFFICULTY METRICS 3.4 Comparing different metrics on CIFAR10-H

discussed in section 2. We visualize the distribution of normalized angular gap2 in
Figure 35.

(a) 1 epochs (b) 10 epochs

(c) 60 epcohs (d) 100 epochs

Figure 34: The distributions of softmax classifier’s loss

3.4 Comparing different metrics on CIFAR10-H

Finally, we reach the end of this section by comparing different difficulty scores on
CIFAR10-H with a correlation matrix (Figure 36). For human scores, we have cross-
entropy loss per image, output margin and reaction time. For the score based on
Monte Carlo sampling, we have C-score offered by Jiang et al. (2020). For the score
based on training dynamics, we have forgetting events. For pretrained empirical
loss, we have ResNet18 output margin and ResNet18 loss. For the two dimensional
difficulty score, we have prediction depth. For score based on DML,we have angular
gap (output margin). We compute Spearman rank correlation in a pairwise way. And
we show the correlation matrix in Figure 36. We also report other baseline difficulty
scores in Figure37.

Pretrained ResNet18 loss is uncalibrated which follows self-paced learning’s con-
vention reported in literature. By contrast, ResNet18 output margin use a hold-out
dataset. The uncalibrated ResNet18 model report a entirely uncorrelated order with
others. It is interesting to see forgetting events also show less correlation with other
scores due to uncalibrated training dynamics. Human loss, C-score and angular gap
show more correlation which probably means they belong to the same category, em-
pirical loss. Prediction depth is likely to be an outstanding metric, and it shows an
almost even correlation with C-score and forgetting events. This correlation ma-
trix highlights the importance of being unbiased and well-calibrated, the abilities to
report a right amount of confidence or ambiguity during difficulty measurement.

2We normalize this quantity because we need the metric to between 0 and 1 for self-paced cur-
riculum learning introduced in Section 5

39

3.4 Comparing different metrics on CIFAR10-H 3 DIFFICULTY METRICS

(a) 1 epochs (b) 10 epochs

(c) 60 epcohs (d) 100 epochs

Figure 35: The distributions of Angular gap

Figure 36: Correlation matrix of different difficulty scores on CIFAR10-H

40

4 HANDCRAFTED CURRICULA

(a) C-score (b) forgetting events

(c) Uncalibrate ResNet (d) ResNet Output Margin

Figure 37: The distributions of difficulty metrics

4 Handcrafted curricula

As discussed in Section 2, For handcrafted curricula, designers must first choose
a proper difficulty metric according to the downstream task before choosing the
right pacing function. This is because pacing functions need orders computed from
previous runs. The classic combination has generated numerous curricula learning
methods. As a handy tool, continuous schedulers are often problem agnostic and
can be implemented with a few lines added upon common data loaders. However,
Wu et al. (2020) shows curriculum learning results in no improvement for image
classification. In this project, we beg to differ this conclusion by demonstrating
curriculum learning helps image classification.

As have been discussed in Section 2, Wu et al. (2020) might violate the easy-
to-hard principle. To test this doubt, we use human scores as difficulty scores and
linearly add in training examples of CIFAR10-H. This configuration is called standard
curriculum and has a fixed order (Bengio et al., 2009). In this project, we run
three experiment with different random seeds for each curriculum parameter and
report the average accuracy . During each run, we fix the seeds of random, NumPy
and PyTorch packages. Then we turn on CUDNN deterministic setting which may
probably slow down training. However, this allows us to compare different methods
head-to-head. We train ResNet18 models from scratch in these runs equally for
40000 iterations. We apply standard data augmentation of CIFAR10. The optimizer
we use is SGD with a momentum of 0.9. The learning rate starts from 0.1 and
gradually decrease to 0 with a cosine annealing strategy. We create a search grid
for standard curriculum and run our experiments on Slurm. We report the highest
accuracy this time in Figure 39.
This causes spikes in the accuracy curves as shown in Figure 41 and Figure42. The
results of the same configuration but different random seeds vary a lot and collapse
can happen during training (Figure40).

41

4 HANDCRAFTED CURRICULA

Figure 38: This plot shows four sets of curriculum learning parameters. They all start
from 80 percentage of training samples (easy) and gradually add in difficult samples
until 20/40/60/80 percentage of total iterations. These pacing functions cooperate with
the learning rate scheduler. Together, they control the update gradients from samples of
different difficulty levels

Figure 39: Grid search of standard paced learning on CIFAR10-H

42

4 HANDCRAFTED CURRICULA

(a) Loss (b) Accuracy

Figure 40: Damaging training with standard PL strategy (a = 0.5,b = 0.7)

(a) Loss (b) Top1 Accuracy

Figure 41: Improving training with standard PL strategy (a = 0.5,b = 0.7)

(a) Loss
(b) Accuracy

Figure 42: Damaging training with standard PL strategy (a = 0.5,b = 0.7)

43

4.1 A class-balance aware scheduler 4 HANDCRAFTED CURRICULA

Figure 43: class-balance aware paced learning scheduler

4.1 A class-balance aware scheduler

To tackle this, we propose a class-balance aware paced learning scheduler shown in
Figure 43. The idea is to introduce local randomness with a class balancing strategy.
The algorithm can be explained as follows, we first group sorted training data with
their labels as a dictionary. Then we apply standard continuous paced learning steps
that choose the number of add-in samples with a and b. Next, we use the precom-
puted dictionary to generate indices for class-balanced buckets. The generator first
samples a class and then sample a data point of this class from easy to hard. In this
case, the size of each bucket equals the number of classes. This class-balancing strat-
egy introduces randomness to the local level but maintains the easy-to-hard data
structure at the global level. The details of our continuous paced learning scheduler
is shown in Algorithm 2. The improvement over standard i.i.d training is shown in
Figure 52.

As shown in Algorithm 3, the scheduler can be a work-out-of-shelf module for
discrete paced learning after changing a few lines. The embedded class-balancing
strategy not only shuffles the data within the bucket but can handle imbalanced clas-
sification by upsampling the minority class during training. As we will show in the
empirical experiments, this scheduler makes a tradeoff between i.i.d training and
easy-to-hard curriculum. It provides a more stable performance boost. The sched-
uler works well with most difficulty metrics on image classification tasks and leads
to consistent results. Although we only have a handcrafted offline version now, we
are confident that this scheduler can be extended to online curriculum learning.

44

4 HANDCRAFTED CURRICULA 4.1 A class-balance aware scheduler

Algorithm 2 Class balance aware paced learning(continuous

Input: S:training dataset; M: difficulty measurer; λ(·):pacing function; b: initial
training proportion; a:milestone when all data enter; g(·): bucket generator

Output: W ∗: optimal model parameters
S,order← sort(S,M);
{l : order} ← group(S,order) . group order w.r.t labels
S0 = bb ∗ Sc . warm up bucket
train(S0,M)
Shard = S\S0
for epoch = 1,2, . . . K do

λt = λ(k,a,b); 0 < λt < 1 . get current λ training data
St = bλt ∗ Shardc
Strain = Strain ∪ St . add in more difficult samples
p = Strain |C . No. of class-balance training buckets
[B1,B2, . . . ,Bp]← g(Strain, {C : order},p) . get class-balance training buckets
ordert← [B1,B2, ...Bp]
Strain = Strain[ordert]
while not stagnate train for k epochs do

train(Strain,M) . apply normal mini-batch training
end while

end for
return W ∗

Algorithm 3 Class balance aware paced learning (discrete)

Input: S:training dataset; M: difficulty measurer; g:training bucket generator
Output: W ∗: optimal model parameters
S,order← sort(S,M);
[S1,S2, ...ST] = S
Strain = φ
{l : order} ← group order w.r.t labels
for t = 1,2, ... T do

Strain = Strain ∪ St . add in more difficult samples
p = Strain |C . No. of class-balance training buckets
[B1,B2, ...Bp]← g(Strain, {C : order},p) . get class-balance training buckets
ordert← [B1,B2, ...Bp]
Strain = Strain[ordert]
while not stagnate train for k epochs do

train(Strain,M) . apply normal mini-batch training
end while

end for
return W ∗

45

4.2 Evaluation 4 HANDCRAFTED CURRICULA

4.2 Evaluation

In this project, we have trained over 900 models to understand curriculum learn-
ing. Here, we opt to show the usefulness of paced learning for image classification.
Generally, it is difficult to evaluate curriculum learning methods without exhaustive
grid search. For grid search, we run each configuration with three random seeds and
report the average accuracy. During each run, we fix the seeds of random, NumPy
and PyTorch to a constant. Then we turn on CUDNN deterministic setting which
may probably slow down training, but this allows us to compare different methods
head-to-head.

We train the baseline with random i.i.d sampling on both CIFAR10-H3 and CI-
FAR100. The batch size we use for both datasets is 128 and the number of total
training iterations is 20000. We use the standard data augmentation technique for
CIFAR datasets that include random crop with padding, random horizontal flip and
normalization. For optimization, we use a momentum stochastic gradient descent
(SGD) optimizer with momentum equals 0.9 and the weight decay parameter equals
5e − 4. We use a cosine annealing strategy that starts from 0.1 and ends with 0 be-
cause difficult samples are added gradually and frequently in this project. We choose
not to use Dropout or advanced data augmentations such as Cutout to ensure consis-
tent results. We use linear pacing functions and grid search curriculum parameters
a and b. The pacing functions start with b percentage of data and gradually add
in more difficult data until aT iterations and then keeps on training towards the
end.This configuration is adopted for most of our experiments if the difference is not
specifically mentioned.

To highlight the importance of pacing, we perform curriculum learning without

Table 2: Performance of fixed curricula w/o pacing

CIFAR10-H CIFAR100

Top1 Err. Top5 Err. Top1 Err. Top5
Standard i.i.d4 24.00 1.844 23.90 6.87

Forgetting events 25.70 1.98 25.68 8.22
C-Score 24.54 1.96 24.95 7.33

Human score 25.03 1.92

pacing (fixed curriculum) with different forms of difficulty. To apply this, one sorts
samples from easy to hard as a fixed curriculum. The target model learns on this
curriculum without changing the sample order. The strategy is similar to teaching
a student to recite a passage. We compare their results with standard i.i.d. train-
ing in Table2. The curriculum learning w/o pacing function methods neither respects

3As discussed in Section 2, CIFAR10-H contains more ambiguous images with human scores.

46

4 HANDCRAFTED CURRICULA 4.2 Evaluation

global difficulty structure nor introduces any randomness during training. The learn-
ing the model can learn all data at any time. This results in a lower accuracy than
the standard i.i.d. baseline on average.

To compare different pacing functions, we test three pacing functions with our sched-
uler on CIFAR100. We create three search grids for linear, root and quadratic pacing
functions. Figure 44, Figure46 and Figure45 show a similar trend. The upper left
region shows higher accuracy while the lower right shows lower accuracy. Figure
44 shows the optimum in (0.2, 0.8). This means the model performs better when
the curriculum starts with about 80 per cent of data and ends adding data at 20 per
cent of the total iterations. The lower right region also proves the importance of as-
signing enough informative materials within the critical period ??. The experiments
with root pacing functions show fewer different results due to faster data adding.
Quadratic pacing functions show similar results in the upper left region but visibly
worse performance in the lower right region. This is probably because the curricu-
lum has taught the model with too many easy samples and miss the critical period to
learn high-frequency features. A widely accepted hypothesis is that the parameters
of the network are updated too far away towards the distribution of easy data and
can never be pulled back again. Although we did not fix the learning rate, Toneva
et al. (2019) test the comparing experiments with fixed learning rate and show sim-
ilar results. This supports the notion that critical periods cannot be explained solely
in terms of the loss landscape of the optimization. Since different pacing functions
show consistent results, we opt to use linear pacing functions for the rest of the ex-
periments in this chapter. Another benefit of using linear functions is the interplay
between difficulty and optimization is relatively straightforward.
Additionally, we did an ablation study with random curriculum learning, standard
PL, PL with our class-balance-aware scheduler and the baseline. Here random cur-
riculum shuffle the precomputed order and use this order to do paced learning. This
is the ”standard” method reported in Wu et al. (2020). After grid search, we report
the best performed model (Figure53). Our ablation study shows standard PL learns
the fastest and achieve the highest test accuracy, but its curves oscillate a lot. Cur-
riculum learning with a random order shows the worst result. Our novel scheduler
shows an intermediate test accuracy (about 2% improvement) and also stable per-
formance during training. Additionally, we compare paced learning with different
difficulty scores 3. Let us revisit the results of difficulty scores on CIFAR10-H (Fig-
ure37;Figure36). Comparing the histograms, we observe smaller gaps between bins
in C-score than forgetting events. This indicates C-score approximates a smoother
function than forgetting events. Smoothness allows us to tame curriculum learning
with a fine-grained order. Otherwise, schedulers sort samples with equal scores ran-
domly. By contrast, the histograms of human annotations are spiky or uneven but
training with human scores shows better performance than training with forgetting
events (Figure47). This is probably because humans are better at marking ambigu-
ous samples than neural networks. Humans can vote out an almost even result, e.g.,
like 65:35, on ambiguous samples. Whereas uncalibrated neural networks may all
correctly classify those samples and output similar difficulty scores as easy samples.

47

4.2 Evaluation 4 HANDCRAFTED CURRICULA

Figure 44: Paced learning with linear pacing functions

Figure 45: Paced learning with quadratic pacing functions

48

4 HANDCRAFTED CURRICULA 4.2 Evaluation

Figure 46: Paced learning with root pacing functions

Figure 47: Paced learning with forgetting events as difficulty scores(linear pacing func-
tions)

49

4.2 Evaluation 4 HANDCRAFTED CURRICULA

Table 3: Performance of PL on CIFAR10-H and CIFAR100

CIFAR10-H CIFAR100

Top1 Err. Top5 Err. Top1 Err. Top5
Standard i.i.d 24.00 1.844 23.90 6.87

Human Score 21.90 1.51
Forgetting events 22.57 1.86 22.91 7.68

C-Score 21.85 1.33 22.02 5.96
Prediction Depth 21.74 1.21 21.86 5.90

Angular Output Margin 22.07 1.50 22.50 6.33

Model calibration solves this issue and contributes to better curriculum learning with
C-score or PD than those with human scores on image classification. For C-score, we
calibrate every single model in the ensemble. And for PD, we not only calibrate
every single model but also every k-NN classifier. There remains an issue to apply
calibration techniques and curriculum learning to other imaging applications such
as segmentation in our future work.

Furthermore, we compare training with curriculum and anti-curriculum. Our

Figure 48: Curriculum learning with prediction depth

results show curriculum learning systematically outperforms anti-curriculum learn-
ing on CIFAR100 image classification tasks. This result is different from Wu et al.

50

4 HANDCRAFTED CURRICULA 4.2 Evaluation

Figure 49: Anti-curriculum learning with prediction depth

Figure 50: Curriculum learning with angular output margin

51

4.2 Evaluation 4 HANDCRAFTED CURRICULA

Figure 51: Anti-curriculum learning with angular output margin

(2020). As we point out earlier, our scheduler respects global difficulty structure and
follow the principle of curriculum learning right from the initial subset.
Interestingly, an overshoot exists in the early stage of our paced learning with C-

(a) Loss (b) Accuracy

Figure 52: Orange line: Paced learning trains student network on CIFAR100 from easy
to difficult with our class-balance-aware scheduler (example difficulty is evaluated with
pretrained teacher networks). Blue line: standard random i.i.d training

score. In Figure 52, both training and testing loss decreases drastically at the begin-
ning as the model learns from easy samples. Then we add in hard samples and the
training loss levels for several epochs before decreasing to zero. Similarly, accuracy
curves show overshooting as well and the test accuracy rises to over 78 after con-
vergence. The existence of overshooting implies the simple function that the model
learns cannot predict the hard training samples. This is connected to a recent paper
? where they observe early layers generalize while later layers memorize. Different

52

4 HANDCRAFTED CURRICULA 4.3 Handcrafted curricula for Transfer learning

experimental paradigms also report DNN learning easy and simple functions first. A
well-known benefit of simple functions is they generalize very well. Our method en-
courages learning easy functions by presenting easy samples first which can be seen
from the relatively small gap between training and testing. This phenomenon is also
supported by paced learning with forgetting events shown in Figure. To test the
degree of generalization gap minimization, we test sharpness-aware minimization
(SAM) with the same experimental setup. We use David Samuel’s PyTorch imple-
mentation and discard label smoothing and dropout to get a fair comparison. We
search the neighbourhood size ρ as [0.01, 0.05, 0.1, 0.2] and runs three experiments
with each configuration. For the best configuration, we get an average accuracy of
77.90. Although SAM gets marginally lower result, its efficiency is obvious as the al-
gorithm explicitly minimize local sharpness and leads to a “flat” minimum. Whereas
paced learning implicitly achieves generalization gap minimization with a manually
designed curriculum. This requires considerable hyperparameter searching which
can be infeasible for large scale problems.
We also implement and investigate the behaviour of the Baby step scheduler, as a

(a) Loss (b) Accuracy

Figure 53: Ablation study on CIFAR10-H

standard discrete scheduler. Unfortunately, to implement this scheduler, one needs
to carefully consider the number of buckets, bucket shuffling and the number of in-
ner loops. Additionally, one also needs to design a and b for this discrete pacing
function. This leads to a considerable searching space. In this project, we manually
design these curricula on CIFAR100 with C-score. We performs hyper tuning on the
scheduler with the following search grid (Table 4). For simplicity, we shuffle the data
within each bucket but keep the order of data buckets. Note that, when a equals 0.0
or b equals 1.0, the algorithm is still different from standard i.i.d training as the
global difficulty is preserved. We report the highest accuracy of the best perform
model as 0.785. We observe about 2% improvement on CIFAR100.

4.3 Handcrafted curricula for Transfer learning

As pointed out by Bengio, we can take curriculum learning as a special form of
transfer learning where the subtasks gradually guide learners towards a better per-

53

4.3 Handcrafted curricula for Transfer learning 4 HANDCRAFTED CURRICULA

Table 4: Search grid for Baby step scheduler

Variable name Range

No. of buckets [20,50]
No. of inner loops [1,2,3]

a [0.0,0.3,0.6]
b [0.6,0.8,1.0]

Figure 54: MBConv Block

formance on the final target task. We have also shown presenting samples in a
meaningful order improves generalization. These motivate us to test paced learning
in the transfer learning setting. In image classification, SOTA convolutional neural
networks are designed to be compact and efficient which facilitates deployment on
portable devices. However, finetuning these architectures can be a disaster. With
fewer parameters, it is a challenging task to transfer the knowledge learnt from the
original domain to the target domain. To the best of our knowledge, EfficientV2 is
the SOTA model on ImageNet at the moment. In this project, we test the effect of
PL on finetuning parameters of EfficientNetV2-B0 learnt on ImageNet to CIFAR100
(Figure 56).

EfficientNet is the SOTA architecture in terms of both accuracy and efficiency on
ImageNet. Google Research finds this series of architectures with compound model
scaling and neural architecture search ??. The base block of EfficientNetV1 is the
invertible residual block, also known as the MBConv block. Let us take a closer look
at this structure and see how it is modified as Fused-MBConv used in EfficientV2.
As shown in Fig, the main difference between the MBConv block (Figure 54 and
residual block is that the original 2d convolution is replaced with depthwise convo-

Figure 55: Fused MBConv

54

4 HANDCRAFTED CURRICULA 4.3 Handcrafted curricula for Transfer learning

lution followed by a squeeze and excite (SE) block. The depthwise convolution use
M filters to separately convolute M feature maps. For the same number of feature
maps, this operation is faster than the original so one can add more channels to
capture more features. The SE block applies channel attention to those feature maps
with its squeeze operation. Finally, the output of the main branch is convoluted
to the same size as the input and a dropout is applied. Different from Resblock’s
wide-narrow-wide structure, MBConv uses a narrow-wide-narrow layout. This al-
lows deep models to learn more features with fewer parameters.

However, an existing problem of EfficientV1 is that using depthwise convolutions in
the shallow layers slow down the computation. Although the depthwise convolution
has fewer parameters and smaller FLOPs than the original convolution, it is often
not possible for this operation to make full use of existing hardware accelerators. In
other words, the actual speed is not as fast as expected even though the theoretical
complexity is small. Recent research proposes Fused-MBConv to make better use
of mobile or server accelerators. The Fused-MBConv block (Figure 55) replaces the
main branch of the original MBConv (depthwise convolution and SE block) with a
common 2d convolution, as shown in Figure. Additionally, EfficientNetV0 uses drop
connect as regularization. Unlike dropout, drop connect randomly discard the inputs
of neurons instead of randomly cutting off their outputs. By contrast, EfficientNetV2
uses Stochastic depth as its dropout layer which can adjust the depth by removing
entirely removing the main branch.

With variants of MBConv, the EfficientNet models a complex function with limited
parameters distributed in a deep architecture. The features across different layers
probably need to be precise enough and coordinate like a close-knit. This is likely
the reason why finetuning is difficult on these models. We compare finetuning the
pretrained EfficientNetV2-B0 on CIFAR100 with paced learning and without. For
augmentation, we opt to resize the input image to 224 and apply random horizontal
flip but disable cutout for a fair comparison. The batch size we use is 128 and the
weight decay is turned off. The initial learning rate is 0.001. Since we look for both
convergence rate and accuracy, we set the number of training epochs as 100. For
paced learning parameters we search a from [0.1, 0.2, 0.3] and b from [0.6, 0.7,
0.8]. We run three experiments with each configuration and takes an average from
them. We also train a baseline with standard i.i.d. We report the best performed
paced learning and the baseline in Figure. We made an attempt to use curriculum
learning in noisy labelled image classification. We add symmetric label noise to
CIFAR10 by splitting the training dataset into several shards and shuffle the labels
of 40% data in each shard. To apply curriculum learning with prediction depth,
we first train 12 ResNet18 models with different data splits as different pretained
teacher networks. Next, we place 9 k-NN probes in each ResNet18. Using these
probes, we evaluate both train time and test time prediction depth. We traverse the
PD histogram from left to right and bottom to top to get easy-to-difficult order. We
use this order to train the student model from easy to difficult with our scheduler and
get the final performance as Figure 57. The initial training data is clean (b = 0.5),

55

4.3 Handcrafted curricula for Transfer learning 4 HANDCRAFTED CURRICULA

(a) Loss (b) Accuracy

Figure 56: Comparision of transfer learning on CIFAR100

(a) Loss (b) Accuracy

Figure 57: Performance of student model trained with curriculum learning on CIFAR10
with 40% of label noise

56

4 HANDCRAFTED CURRICULA 4.4 Discussion

and the data adding process stops at (0.4). We get a final test accuracy of 0.64,
lower than the baselines reported in Zhou et al. (2021). However, the test accuracy
shows a promising upward trend at the beginning but decreases when the noisy data
is added. This is mainly because a dissatisfactory curriculum parameters. The k-NN
probes are also not calibrated with temperature parameters.

4.4 Discussion

From a number of experiments, we demonstrate the effectiveness of paced learning
when ambiguities between classes exist. The number of easy samples and the num-
ber of ambiguous samples should probably be large enough for CL to show its power.
Currently, there is still a lack of naturally ambiguous examples for us to fully research
this phenomenon. We also conclude the weaknesses of paced learning as follows.
First, PL need precomputed difficulty scores which means training cannot be tuned
end to end. Second, it takes expert knowledge to manually design the best combi-
nation of a scoring function and a pacing function as a useful curriculum. Third,
although paced learning can reduce generalization gap, best performed curriculum
parameters only come from exhaustive grid search at the moment. This makes cur-
riculum learning a less efficient choice than sharpness aware minimization.

57

5 AUTOMATIC CURRICULA

5 Automatic curricula

Despite its straightforward design, a manually designed curriculum can limit the
performance of the training model due to issues discussed in Section IV. Unlike
handcrafted curricula, learners have access to all materials in self-paced learning.
However, it is worth to mention optimizing SPL can be unstable and tuning the hy-
perparameters can be a disaster in many circumstances. In this section, we opt to
explore the reasons for these issues. An additive objective of this section is to tame
an SPL algorithm for image classification that automatically creates curricula for our
training model.

Let us split our dataset as training, validation and testing, and denote a training
sample, its label and its empirical loss as xi , li , yi . SPL (Kumar et al., 2010) can be
formalized as follows

min
w,v∈[0,1]N

E(w,v;λ)[
N∑
i=1

vili + g(v;λ)] (5.1)

v =
[
v1 v2... vN

]
(5.2)

where v is a learnable weight vector of size N; λ, an aging function, models the
learning stage or the age of our current model. The aging function is monotonically
increasing with the number of iterations. The training objective 5.2 is mainly a
empirical risk composed of weighted loss and a regularization over the weight vector.
In the original SPL, the regularization term in (Kumar et al., 2010) is defined as

g(v;λ) = −λ(t)
N∑
i=1

vi (5.3)

To solve this multivariable optimization problem, SPL methods usually use an alter-
native optimizing strategy (AOS) that alternately fix one parameter while optimizing
the other. When w is fixed, the objective becomes a linear term of v which is a convex
function. Therefore the global optimum v∗ can be analytically computed as

vi
∗ =

 1, li < λ

0 otherwise
(5.4)

Through these mathematical analysis, the following properties can be found. First,
λ acts as a hard threshold function that dynamically adds in training samples over
time. At the beginning of training, λ is small and only allows easier samples with
small loss to attend training. As λ grows larger, more difficult samples are intro-
duced and our model can learn more sophisticated knowledge from them. This age
parameter λ is predefined, but unlike pacing functions which is problem agnostic it
interacts intensively with loss. This implicitly shows the flexibilty of SPL because the
thresholding can be applied on not only loss but other forms of feedback from from

58

5 AUTOMATIC CURRICULA 5.1 Class-imbalanced learning behavior

the current model. Second, alternatively optimizing w and v will reduce the loss
while maintaining (recovering) the distribution of training data. Unfortunately, the
optima cannot be guaranteed due to instability of AOS Kumar et al. (2010).
The structure of this section is as follows. We investigate the behaviour of self-paced

Table 5: Commonly used regularisation terms

learning starting with a toy example, i.e., a logistic regression task on a 2D space.
Next, we try out different loss-based curricula with training schedulers and assess
their effects. Then we apply self-paced learning to image classification on CIFAR10H
datasets and compare the results.

5.1 Class-imbalanced learning behavior

To illustrate the training behaviour of SPL, let us consider a binary logistic regression
on a 2D space. The likelihood function can be formulated as follows

P (Y |W,X) =
N∏
i=1

P (ŷi = yi |W,x) (5.5)

logP (Y |W,X) =
N∑
i=1

yi log(w1x1i +w2x2i +w0) + (1− yi) log(1− (x1i +w2x2i +w0))

(5.6)

For simplicity, we use a linear classifier because difficulty scores can be easily mea-
sured with distances to current decision boundary. The weights are initialized with
Xavier initialization with a fixed random seed. Two clusters of data are generated on
(0.,0.) and (3.,3.). We use the original loss function and the age parameter grows
geometrically. To enforce fair comparison, we keep using the same geometric aging
function for the following experiments. In Figure59, we observe the SPL strategy

59

5.2 SPL and SPCL on image classification 5 AUTOMATIC CURRICULA

(a) Batch GD Loss (b) Batch GD Acc.

(c) SGD Loss (d) SGD Acc.

Figure 58: Comparison of SPL trained with Batch GD and SGD

first let the model perfectly classify examples of the orange class and then add in
examples of the orange class. With a fixed learning rate as 0.005, we test training
with stochastic gradient descent and batch gradient descent for 30 epochs. Stochas-
tic gradient descent shows faster convergence on this binary classification problem
(Figure58).

Then we test different regularization terms on the half-moon dataset with two-layer
MLP. These soft regularisation terms extend the weight vector from binary values
to continuous values between zero and one. Figure 63 shows examples that are far
away from the decision boundary have higher losses coloured darker than those that
are closer to the decision boundary. Figure 60, Figure 61 and Figure 62 show the
dynamics of training with different regularization terms. Here we report weighted
loss for SPL with soft regularisation terms.The weighted loss curves show overshoots
at the early stage of training. As the model learns from more data, it increases the
weights from samples. Therefore, the loss curves will first increase and then con-
verge. We find the hard regularisation show comparable or even better performance.

60

5 AUTOMATIC CURRICULA 5.2 SPL and SPCL on image classification

(a) 1st epoch (b) 2nd epoch

(c) 3rd epcoh (d) 5 epoch

Figure 59: Self-paced learning with Hard regularization term on two Gaussians

(a) Loss (b) Accuracy (c) Left out

Figure 60: Training dynamics of SPL with hard regularisation

(a) Loss (b) Accuracy (c) Left out

Figure 61: Training dynamics of SPL with linear regularisation

61

5.2 SPL and SPCL on image classification 5 AUTOMATIC CURRICULA

(a) Loss (b) Accuracy (c) Left out

Figure 62: Training dynamics of SPL with log regularisation

(a) 1st epoch (b) 2nd epoch

(c) 3rd epcoh (d) 5 epoch

Figure 63: Self-paced learning with aging regularization term (log) on Half moon
dataset

62

5 AUTOMATIC CURRICULA 5.2 SPL and SPCL on image classification

Figure 64: Self-paced curriculum learning with angular gap

5.2 SPL and SPCL on image classification

In this subsection we explore SPL and SPCL by testing whether students can progress
more efficiently with teachers’ initial guidance and constant supervision from labels.
Figure 64 shows an example of how SPCL works with angular gap difficulty scores.
The pretrained teacher network extracts features from the current batch and send
the difficulty scores auxiliary signal to self-paced learning. This signal works to-
gether with the feedback from the student network and jointly create a dynamic
curriculum.
Figure 65 and Figure 66 show typical examples of SPL with geometric pacing func-

(a) Loss (b) Accuracy (c) Left out

Figure 65: SPL with geometric aging function

tions and linear functions. We choose a linear aging function with an initial thresh-
old as b and increase λ linearly to the maximum loss threshold. We consider 20 as a
large enough value for the loss of clean data. So the loss threshold starts with b and

63

5.2 SPL and SPCL on image classification 5 AUTOMATIC CURRICULA

(a) Loss (b) Accuracy (c) Left out

Figure 66: SPL with linear aging function

gradually increases until a percentage of total iterations when it reaches the maxi-
mum. For SPCL, we normalize the precomputed difficulty scores to values between 0
and 1, and plug them into aging parameter update rules. We create similar grid with
Figure 67 to search the best curriculum learning for SPL and SPCL. We compare the
best performed models trained with SPCL in Table 6 and Table 7. We observe SPCL
achieves higher performance with C-score and PD. We guess the reason is likely to
lie smoothness as both two scores have smoother distribution than others. This may
lead to better solutions in alternative optimization.

Table 6: Performance on CIFAR10H

Paced Learning SPCL

Top1 Acc. Top5 Acc. Top1 Acc. Top5 Acc.

Human Score 78.10 98.49 77.60 98.23
Forgetting events 77.43 98.14 76.80 97.92

C-Score 78.15 98.67 78.10 98.50
Prediction Depth 78.26 98.79 78.15 98.66

Angular Output Margin 77.93 98.50 77.51 97.75

Table 7: Performance on CIFAR100

Paced Learning SPCL

Top1 Err. Top5 Err. Top1 Err. Top5 Err.

Forgetting events 22.91 7.68 22.91 7.12
C-Score 22.02 5.96 22.50 6.33

Prediction Depth 21.86 5.90 22.68 6.45
Angular Output Margin 22.50 6.33 22.85 6.50

64

6 FUTURE WORK

Figure 67: SPL search grid

6 Future work

Currently, we schedule to improve curriculum learning at two parts. First, we will
increase model depth and find better calibration techniques to get more fine-grained
prediction depth. With improved difficulty score, we can potentially increase gen-
eralizability. Second, pre-trained teacher networks provide guidance in the form of
orders/ weights. The guidance is not strong enough. We opt to combine curriculum
learning with knowledge distillation and see if two is better than one. There are a
few works, (Xiang et al., 2020),(Aguilar et al., 2020), in this direction with similar
ideas but their results are about 84 on CIFAR100 which is far from perfect. We are
going to start this work from paced learning first.

65

7 CONCLUSION

7 Conclusion

We have come to the following conclusions through a large amount of curriculum
learning experiments on image classification.

1. We highlight the importance of model calibration in difficulty measurement.
For handcrafted curricula, a good difficulty scoring function should reflect ex-
ample ambiguity accurately enough which means distinguishable for sorting.
Furthermore, Prediction depth is a novel difficulty metric with great potential.

2. With intensive grid search, we demonstrate curriculum learning can increase
deep model’s generalisability for image classification. Presenting examples
from easy to hard encourage the model to learn a simple function first. We
further encourage practitioners to try our class-balance-aware paced learning
scheduler. Optimizing a curriculum is limited to exhaustive grid search at the
moment.

3. We propose a new difficulty metric called angular gap. Although this metric
might be ”not among the best”, people can easily interpret example difficulty
from the learnt hyper ball. can be easily This metric works reasonably well in
both handcrafted and automatic curricula and can be further refined.

4. For self-paced learning, we find the original hard regularisation term performs
reasonably well for clean datasets. In this project, automatic curricula did not
outperform handcrafted ones for image classification on CIFAR100. In SPL, We
observe the model first learns from an easy class and then moves to difficult
ones.

66

REFERENCES REFERENCES

References

Gustavo Aguilar, Yuan Ling, Yu Zhang, Benjamin Yao, Xing Fan, and Chenlei Guo. Knowledge
distillation from internal representations. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 7350–7357, 2020. pages 65

Mohammad Alsharid, R. El-Bouri, Harshita Sharma, L. Drukker, A. Papageorghiou, and J. No-
ble. A curriculum learning based approach to captioning ultrasound images. Medical ul-
trasound, and preterm, perinatal and paediatric image analysis, 12437:75–84, 2020.
pages 18

Robert JN Baldock, Hartmut Maennel, and Behnam Neyshabur. Deep learning through the
lens of example difficulty. arXiv preprint arXiv:2106.09647, 2021. pages 13, 16, 27

R. Battleday, Joshua C. Peterson, and T. Griffiths. Capturing human categorization of natural
images by combining deep networks and cognitive models. Nature Communications, 11,
2020. pages 7, 8

Yoshua Bengio, J. Louradour, Ronan Collobert, and J. Weston. Curriculum learning. In ICML
’09, 2009. pages 6, 19, 41

Jerome S Bruner, Jacqueline J Goodnow, and George A Austin. A study of thinking. Rout-
ledge, 2017. pages 5

Volkan Cirik, Eduard Hovy, and Louis-Philippe Morency. Visualizing and understanding cur-
riculum learning for long short-term memory networks, 2016. pages 22

Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular
margin loss for deep face recognition, 2019. pages 35

Yixiao Ge, Da peng Chen, Feng Zhu, Rui Zhao, and Hongsheng Li. Self-paced contrastive
learning with hybrid memory for domain adaptive object re-id. ArXiv, abs/2006.02713,
2020. pages 22

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural
networks. ArXiv, abs/1706.04599, 2017. pages 23

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning, 2020. pages 36, 37

Mobarakol Islam and B. Glocker. Spatially varying label smoothing: Capturing uncertainty
from expert annotations. In IPMI, 2021. pages 24

Lu Jiang, Deyu Meng, Shoou-I Yu, Zhenzhong Lan, S. Shan, and A. Hauptmann. Self-paced
learning with diversity. In NIPS, 2014. pages 22

Lu Jiang, Deyu Meng, Qian Zhao, S. Shan, and A. Hauptmann. Self-paced curriculum learn-
ing. In AAAI, 2015. pages 22

Lu Jiang, Zhengyuan Zhou, Thomas Leung, L. Li, and Li Fei-Fei. Mentornet: Learning data-
driven curriculum for very deep neural networks on corrupted labels. In ICML, 2018.
pages 22

67

REFERENCES REFERENCES

Yiding Jiang, Dilip Krishnan, Hossein Mobahi, and Samy Bengio. Predicting the generaliza-
tion gap in deep networks with margin distributions, 2019. pages 18

Ziheng Jiang, Chiyuan Zhang, Kunal Talwar, and M. Mozer. Characterizing structural regu-
larities of labeled data in overparameterized models. arXiv: Learning, 2020. pages 14,
39

Pascal Klink, Carlo D’Eramo, Jan Peters, and Joni Pajarinen. Self-paced deep reinforcement
learning, 2020. pages 22

M. Kumar, Ben Packer, and D. Koller. Self-paced learning for latent variable models. In NIPS,
2010. pages 22, 58, 59

Manish Kumar, George F. Foster, Colin Cherry, and M. Krikun. Reinforcement learning based
curriculum optimization for neural machine translation. In NAACL, 2019. pages 6, 22

Yutian Li, Feng Gao, Zhijian Ou, and Jiasong Sun. Angular softmax loss for end-to-end
speaker verification. In 2018 11th International Symposium on Chinese Spoken Lan-
guage Processing (ISCSLP), pages 190–194. IEEE, 2018. pages 35

Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. Sphereface:
Deep hypersphere embedding for face recognition. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 212–220, 2017. pages 35

Rafael Müller, Simon Kornblith, and Geoffrey E. Hinton. When does label smoothing help?
In NeurIPS, 2019. pages 24, 37

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor, and Peter
Stone. Curriculum learning for reinforcement learning domains: A framework and survey,
2020. pages 6, 22

Jeremy Nixon, Michael W Dusenberry, Linchuan Zhang, Ghassen Jerfel, and Dustin Tran.
Measuring calibration in deep learning. In CVPR Workshops, volume 2, 2019. pages 23

Giorgio Patrini, A. Rozza, A. Menon, R. Nock, and Lizhen Qu. Making deep neural networks
robust to label noise: A loss correction approach. 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2233–2241, 2017. pages 37

Anastasia Pentina, Viktoriia Sharmanska, and Christoph H. Lampert. Curriculum learning of
multiple tasks, 2014. pages 22

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singu-
lar vector canonical correlation analysis for deep learning dynamics and interpretability.
arXiv preprint arXiv:1706.05806, 2017. pages 16

Oren Rippel, Manohar Paluri, Piotr Dollar, and Lubomir Bourdev. Metric learning with adap-
tive density discrimination, 2016. pages 18

Daniel Soudry, E. Hoffer, Suriya Gunasekar, and Nathan Srebro. The implicit bias of gradient
descent on separable data. ArXiv, abs/1710.10345, 2018. pages 13

68

REFERENCES REFERENCES

Valentin I Spitkovsky, Hiyan Alshawi, and Dan Jurafsky. From baby steps to leapfrog: How
“less is more” in unsupervised dependency parsing. In Human Language Technologies:
The 2010 Annual Conference of the North American Chapter of the Association for
Computational Linguistics, pages 751–759, 2010. pages 20

Cory Stephenson, Suchismita Padhy, Abhinav Ganesh, Yue Hui, Hanlin Tang, and SueYeon
Chung. On the geometry of generalization and memorization in deep neural networks.
arXiv preprint arXiv:2105.14602, 2021. pages 16

Mariya Toneva, Alessandro Sordoni, Rémi Tachet des Combes, Adam Trischler, Yoshua Ben-
gio, and Geoffrey J. Gordon. An empirical study of example forgetting during deep neural
network learning. ArXiv, abs/1812.05159, 2019. pages 13, 47

Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and
Wei Liu. Cosface: Large margin cosine loss for deep face recognition, 2018. pages 35

Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on curriculum learning, 2021. pages 20

Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A discriminative feature learning
approach for deep face recognition. In European conference on computer vision, pages
499–515. Springer, 2016. pages 18

X. Wu, Ethan Dyer, and Behnam Neyshabur. When do curricula work?
ArXiv, abs/2012.03107, 2020. URL https://github.com/google-research/

understanding-curricula/blob/9e6774b48587b4a24affc61edec3d524ac378aa7/

main_w_test.py. pages 6, 22, 41, 47, 50

Liuyu Xiang, Guiguang Ding, and Jungong Han. Learning from multiple experts: Self-paced
knowledge distillation for long-tailed classification. In European Conference on Com-
puter Vision, pages 247–263. Springer, 2020. pages 65

Xuan Zhang, Gaurav Kumar, Huda Khayrallah, Kenton Murray, Jeremy Gwinnup, Marianna J
Martindale, Paul McNamee, Kevin Duh, and Marine Carpuat. An empirical exploration of
curriculum learning for neural machine translation, 2018. pages 22

Tianyi Zhou, Shengjie Wang, and Jeff Bilmes. Robust curriculum learning: from clean label
detection to noisy label self-correction. In International Conference on Learning Rep-
resentations, 2021. URL https://openreview.net/forum?id=lmTWnm3coJJ. pages 6,
57

69

https://github.com/google-research/understanding-curricula/blob/9e6774b48587b4a24affc61edec3d524ac378aa7/main_w_test.py
https://github.com/google-research/understanding-curricula/blob/9e6774b48587b4a24affc61edec3d524ac378aa7/main_w_test.py
https://github.com/google-research/understanding-curricula/blob/9e6774b48587b4a24affc61edec3d524ac378aa7/main_w_test.py
https://openreview.net/forum?id=lmTWnm3coJJ

	1 Introduction
	2 Background
	2.1 Human perceptual uncertainty
	2.1.1 Quality control
	2.1.2 Data Analysis

	2.2 Pretrained deep difficulty metrics
	2.2.1 Output margin
	2.2.2 Forgetting events
	2.2.3 C-score
	2.2.4 Prediction depth
	2.2.5 Deep metric
	2.2.6 Other deep learning scores

	2.3 Curriculum learning methods
	2.3.1 Predefined curricula
	2.3.2 Automatic curricula

	2.4 Confidence and model calibration

	3 Difficulty Metrics
	3.1 Model calibration
	3.2 Prediction Depth
	3.2.1 On two dimensional difficulty
	3.2.2 Discussion

	3.3 Angular output magin
	3.3.1 Inter-class variance and intra-class variance
	3.3.2 Find a space with deep metric learning
	3.3.3 Which angle for difficulty

	3.4 Comparing different metrics on CIFAR10-H

	4 Handcrafted curricula
	4.1 A class-balance aware scheduler
	4.2 Evaluation
	4.3 Handcrafted curricula for Transfer learning
	4.4 Discussion

	5 Automatic curricula
	5.1 Class-imbalanced learning behavior
	5.2 SPL and SPCL on image classification

	6 Future work
	7 Conclusion

